Dr Matthew Sharpe


Research staff

Academic and research departments

Publications

M. K. Sharpe, I. P. Marko, D. A. Duffy, J. England, E. Schneider, M. Kesaria, V. Fedorov, E. Clarke, C. H. Tan, S. J. Sweeney (2019)A comparative study of epitaxial InGaAsBi/InP structures using Rutherford backscattering spectrometry, X-ray diffraction and photoluminescence techniques, In: Journal of Applied Physics126(12)125706 AIP Publishers

In this work, we used a combination of photoluminescence (PL), high resolution X-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) techniques to investigate material quality and structural properties of MBE-grown InGaAsBi samples (with and without an InGaAs cap layer) with targeted bismuth composition in the 3%–4% range. XRD data showed that the InGaAsBi layers are more homogeneous in the uncapped samples. For the capped samples, the growth of the InGaAs capped layer at higher temperature affects the quality of the InGaAsBi layer and bismuth distribution in the growth direction. Low-temperature PL exhibited multiple emission peaks; the peak energies, widths, and relative intensities were used for comparative analysis of the data in line with the XRD and RBS results. RBS data at a random orientation together with channeled measurements allowed both an estimation of the bismuth composition and analysis of the structural properties. The RBS channeling showed evidence of higher strain due to possible antisite defects in the capped samples grown at a higher temperature. It is also suggested that the growth of the capped layer at high temperature causes deterioration of the bismuth-layer quality. The RBS analysis demonstrated evidence of a reduction of homogeneity of uncapped InGaAsBi layers with increasing bismuth concentration. The uncapped higher bismuth concentration sample showed less defined channeling dips suggesting poorer crystal quality and clustering of bismuth on the sample surface.

Toby Robert Palmer, Hanne M. van der Kooij, Rohani Binti Abu Bakar, Callum D. McAleese, Mathis Duewel, Katja Greiner, Pierre Couture, Matthew Keith Sharpe, Joseph Louis Keddie (2023)Diffusiophoresis-Driven Stratification in Pressure-Sensitive Adhesive Films from Bimodal Waterborne Colloids, In: ACS applied polymer materials5(2)pp. 1565-1576 ACS

The uses of pressure-sensitive adhesives (PSAs) are wide ranging, with applications including labels, tapes, and graphics. To achieve good adhesion, a PSA must exhibit a balance of viscous and elastic properties. Previous research has found that a thin, elastic surface layer on top of a softer, dissipative layer resulted in greater tack adhesion compared with the single layers. Superior properties were achieved through a bilayer obtained via successive depositions, which consume energy and time. To achieve a multilayered structure via a single deposition process, we have stratified mixtures of waterborne colloidal polymer particles with two different sizes: large poly(acrylate) adhesive particles (ca. 660 nm in diameter) and small poly(butyl acrylate) (pBA) particles (ca. 100 nm). We used two types of pBA within the particles: either viscoelastic pBA without an added cross-linker or elastic pBA with a fully cross-linked network. Stratified surface layers of deuterium-labeled pBA particles with thicknesses of at least 1 μm were found via elastic recoil detection and qualitatively verified via the analysis of surface topography. The extent of stratification increased with the evaporation rate; films that were dried slowest exhibited no stratification. This result is consistent with a model of diffusiophoresis. When the elastic, cross-linked pBA particles were stratified at the surface, the tack adhesion properties made a transition from brittle failure to tacky. For pBA without an added cross-linker, all adhesives showed fibrillation during debonding, but the extent of fibrillation increased when the films were stratified. These results demonstrate that the PSA structure can be controlled through the processing conditions to achieve enhanced properties. This research will aid the future development of layered or graded single-deposition PSAs with designed adhesive properties.