- Biomedical Science
BSc (Hons) or MSci (Hons) — 2025 entry Biomedical Science
On our IBMS-accredited Biomedical Science course, you will develop your understanding of disease pathology and treatment across a range of clinical disciplines, with access to facilities found in research and healthcare environments and the option to shape the course to suit your interests.
Why choose
this course?
- Select modules tailored to your interests, including advanced technologies in gene expression, neuroscience, pharmacology and toxicology.
- Access our £12.5 million Innovation for Health Learning Laboratory to use equipment found in the NHS and research labs across the world.
- Gain industry experience through our Professional Training placements and work with one of our partners who offer roles exclusively to students aspiring to become biomedical scientists.
- Complete an integrated masters, which incorporates an additional research-focused year of study, to prepare you for a technical research career in industry or academia.
Statistics
Top 6 in the UK
Biosciences are ranked top 6 for overall student satisfaction* in the National Student Survey 2024
93%
Of our biosciences and medicine graduates go on to employment or further study (Graduate Outcomes 2024, HESA)
12th in the UK
Surrey is ranked 12th in the Complete University Guide 2025
*Measured by % positivity based on Q1-24 for all providers listed in the Guardian University Guide league tables.
Accreditation
What you will study
In your first year, you’ll study topics that are fundamental to biomedical science, including bacteriology, biochemistry, cell biology, genetics, human physiology, microbiology and physiology, ensuring you have a solid foundation upon which to build the rest of your degree.
During your second year, you will build on what you have learnt in your first year, and explore topics with a greater clinical focus, such as pathology, molecular biology, clinical biochemistry, and pharmacology.
In your third year, you’ll select modules that explore topics such as advanced pharmacology, circadian rhythms, immunology, systems biology and toxicology. You’ll study these alongside compulsory modules investigating cancer pathogenesis and treatment, the epidemiology of infectious diseases, our immune system and immunohaematological diseases. You’ll also get the opportunity to work alongside a supervisor to conduct your own scientific research project, performing experiments and critically evaluating data and literature.
If you have chosen to do an integrated masters, you will complete an additional research-focused year of study that includes an advanced research project and training in scientific management and analytical skills. This will prepare you for a technical research career in industry or academia.
Professional recognition
BSc (Hons) - Institute of Biomedical Science (IBMS)
Accredited by the Institute of Biomedical Science (IBMS).
MSci (Hons) - Institute of Biomedical Science (IBMS)
Accredited by the Institute of Biomedical Science (IBMS).
Foundation year
If you don’t meet our entry requirements, you might still be able to apply for this degree with a Biosciences Foundation Year. This is an extra year of study to develop your skills and make it easier for you to get started at university. On successful completion of your foundation year, you’ll be ready to progress to the first year of your degree.
To see what modules you’ll be studying, refer to the foundation tab in the 'Course structure' section.
The academic year is divided into two semesters of 15 weeks each. Each semester consists of a period of teaching, revision/directed learning and assessment.
The structure of our programmes follow clear educational aims that are tailored to each programme. These are all outlined in the programme specifications which include further details such as the learning outcomes.
- Biomedical Science BSc (Hons)
- Biomedical Science BSc (Hons) with foundation year
- Biomedical Science BSc (Hons) with placement
- Biomedical Science BSc (Hons) with foundation year and placement
- Biomedical Science MSci (Hons)
- Biomedical Science MSci (Hons) with placement
Please note: The full module listing for the optional Professional Training placement part of your course is available in the relevant programme specification.
Modules
Modules listed are indicative, reflecting the information available at the time of publication. Modules are subject to teaching availability, student demand and/or class size caps.
The University operates a credit framework for all taught programmes based on a 15-credit tariff.
Course options
Year 1 - BSc (Hons)
Semester 1
Compulsory
The purpose of this module is to introduce students to microorganisms, to the main cellular processes they perform and to how their activities affect humans and the environment. The students learn about microorganisms that cause disease as well as those who have properties we exploit for the benefit of society. Finally through laboratory practical exercises, the students learn and practice a range of basic microbiological techniques, which are essential for the cultivation and study of microorganisms. This module provides students with key skills and a basic broad knowledge of microbiology; a fundamental discipline required for future endeavors in the fields of infectious disease, biotechnology, biomedical science, biological science and other medically-related fields.
View full module detailsThis module will introduce the students to the fundamental biochemistry of life and will provide an understanding of the biological molecules that will inform their studies throughout their degree programme. Students will experience a combination of taught lectures, workshops and practical classes to enhance their learning experience and provide them with the maximum opportunity for success and personal development.
View full module detailsCore
This module introduces students to the structures within a cell and their functions, including an understanding of the processes by which cells divide and die. The module then considers how cell structure and function can be adapted to specialise cells for particular purposes, and begins to consider how different types of cell are able to interact with one another and their environment in order to form higher order structures such as tissues and organs. Overarching these themes are four practical classes which illustrate the way in which cells and tissues can be studied.
View full module detailsIn this module students have the opportunity to explore the cutting-edge of science by engaging with the most newsworthy and contemporary biosciences topics. The students are guided through the development of key employability skills such as literature querying, critical reading and referencing, towards the discovery of a range of highly of high profile topic for their own research (e.g. antimicrobial resistance; decline in bee populations; obesity and diabetes; stem cell research). Working in groups students choose a topic which constitute the focus of their assessment, and learn to leverage on team work and personal resilience. Through the production of a group presentation and an individual summary, students develop important competences in the science communication field which strengthen their employability and academic proficiency.
View full module detailsSemester 2
Compulsory
In this module students will be taken on a learning journey through protein structure and function, and enzymes to emphasize their importance in the biochemical processes that occur in living cells. Students will explore the contributions of lipid molecules and sugars to cellular ATP production, and will be introduced to the important role that the tricarboxylic acid (TCA) and electron transport systems have in production of ATP. Students will undertake enzyme-based practical to develop and enhance concepts taught within the module.
View full module detailsThe purpose of this module is to give a broad introduction to the essential concepts of molecular biology and genetics that are critical to any undergraduate programme in biosciences. We will cover the central dogma of biology: how information is passed from DNA to RNA to protein, and how it is inherited throughout generations. We will examine how genomes are organized and the structure of a gene, initially focusing on prokaryotes. We will discuss the details of DNA replication, transcription and translation and examine some of the key concepts in gene regulation. Students will also be introduced to laboratory and bioinformatic techniques essential for the study of molecular biology. They will also hone their skills in scientific writing through the production of a laboratory report and short essay.
View full module detailsCore
This module aims to introduce students from all backgrounds to the principles of regulation of homeostasis. It provides a foundational knowledge to which principles can be applied in the control of several model systems to maintain homeostasis. The content builds upon content from Cell Biology and Biochemistry in semester 1 of level 4 and this essential knowledge is utilised in multiple modules at levels 5 and 6. Students will develop their practical skills in a number of scenarios, including exercise physiology, use of digital technologies to determine and monitor physiological outputs relating to model systems covered in the content. Laboratory skills are further developed from semester 1, data analysis and use of graphing software is cemented using lab derived data.
View full module detailsThis is a practical module, the aim of which, is to equip students with the critical technical skills used in bacteriology and to familiarize them with key diagnostic tests that are relevant to students on BSc programmes in Biomedical Sciences, Microbiology and Biochemistry. This module builds upon critical concepts and practical techniques covered in BMS1026, and introduces students to a range of medically and environmentally globally important bacteria, and is a key module for the microbiology programme.
View full module detailsYear 2 - BSc (Hons)
Semester 1
Compulsory
This Molecular biology/genetics module builds up on its first-year sister module BMS1047. The key difference from BMS1047 is that it focusses on eukaryotic molecular biology and techniques to evaluate various molecular biology processes, including more genome-wide aspects, and the significance of molecular biology mechanisms in the real world, for e.g., in cancer. Another key difference is that this module covers molecular biology in greater depth, in particular the regulatory aspects of molecular biology. Overall, you will develop oral and written communication skills in molecular biology and genetics and will be able to appreciate the differences between the eukaryotic and prokaryotic molecular systems. Lectures are covered in a block of the following six themes. Advanced human genetics/genomics à The lectures will cover the human genome, natural genetics variations, sequencing genes and genomes, the genotype-phenotype map to include Mendelian genetics/genetic diseases, the transmission of information, and the concept of recombination. Eukaryotic DNA replication à Packaging of DNA, its organization on chromosomes and alignment with the cell cycle (telomeres, crossing over/recombinant). Enzymes needed for DNA replication with a reflection of BMS1047, key differences between Pro- and Eukaryotes, and techniques to study replication. Eukaryotic DNA transcription à Eukaryotic Cis and trans elements in transcription, post-transcription modifications of transcripts and molecular biology methods to study/quantify transcripts, key differences between Pro- and Eukaryotes, enhancer/mediator complex, cDNA synthesis. control of transcription. Post-transcriptional regulation à Molecular mechanisms of splicing, polyadenylation (mechanisms); Cytoplasmic events: RNA export, localization, regulation by lnc/miRNAs, RNA decay. Eukaryotic mRNA translation à Eukaryotic regulation, global and specific regulation of transcription. Techniques to study Eukaryotic translation. regulation of translation by the proteasome. Application of human genetic inheritance and gene expression in cancer, errors in DNA replication & their correction. Practical componentà RNA extraction & quantification, reverse transcription and RT-PCR followed by electrophoresis.
View full module detailsThis module aims to build upon the principles of feedback and basic systems covered at level 4. In this module we go into greater depth about the homeostatic control through the use of nervous, endocrine and other control mechanisms. Students will build upon biochemical principles of receptors and second messengers as key components of feedback mechanisms, applying this to whole-body regulation. Investigation and integration of multiple systems and their response to the same mediator is an essential part of this module. Students will develop their oral and written communication skills within a scientific discipline, enabling them to explain & extrapolate both theoretical knowledge & perform data analysis.
View full module detailsCore
This module is designed to develop an understanding of concepts of bacteriology, protozoology mycology, and virology, with a particular emphasis on pathogenic microbes. Each lecture or group of lectures studies a particular group of microbes. These pathogens are chosen as representative on the basis of their biological characteristics, and also from a global perspective. The module also includes tutorial discussions and laboratory practical classes to further develop deeper understanding and broader application of the topics included in this module. Laboratory sessions will aid your understanding of the theory and enable development of practical and employability skills.
View full module detailsOptional
This module will cover three broad topics, namely Metabolism in Health & Disease (Dr Alfred Thumser & Dr Sarah Bailey), Cell Signalling (Dr Sarah Bailey) and Diabetes mellitus (Dr Matin Whyte & Dr Ben Field)
View full module detailsThis module is designed to introduce the structure and function of the nervous system in animals and humans - with a focus on providing information across different levels of explanation, including single molecules, cellular, neuronal networks and complex behaviours. The students will develop a more in-depth understanding of some aspects linked to the nervous system and brain function introduced in BMS2038. Students will develop their skills in understanding, writing and synthesis of scientific data by presenting published neuroscientific results in a poster or essay format.
View full module detailsSemester 2
Compulsory
The purpose of this module is to provide a conceptual understanding of the key principles of human immunology, including the immune response to infection and foreign antigens. Such an understanding is crucial in many other parts of the programme, including the pathogenicity of infectious disease, oncology and pharmacology. It is a prerequisite for modules at FHEQ level 6 including BMS3054 (Clinical Immunology and Immunohaematology), BMS3102 (Advanced Topics in Cellular and Molecular Immunology) and BMS3104 (Applied Immunology).
View full module detailsThe purpose of the module is to introduce the subject of Pharmacology. They will apply their knowledge of Biochemistry and Physiology to understand the mechanism of action of key current drugs. With a particular focus on the following systems: cardiovascular, neurological, anti-inflammatory, -infectives and -cancer. Students will also consider how the body deals with drugs, namely absorption, distribution, metabolism and excretion (ADME).
View full module detailsCore
The Module will cover a range of topics that will address analytical techniques in research and clinical laboratories, as well as addressing data analysis and statistics.
View full module detailsThis module addresses the essential need for students to understand the concepts of the pathogenesis of major human diseases and provides students with important background knowledge to understand clinical (or analytical) medicine. The contents of this module bridge basic science with the pathology of human disease and medical science including the understanding of the principles of major organ diseases in the human body.
View full module detailsOptional modules for Year 2 - FHEQ Level 5
Students must choose one optional module in semester 1
Year 3 - BSc (Hons)
Semester 1
Compulsory
Core
A series of lectures covering the immunopathology, symptoms, treatment and diagnostic tests for range of clinically relevant diseases in the area of immunology and immunohaematology will be delivered by internal and external experts in the field thus aligning with the United Nation's sustainability development goal 3: Good health and wellbeing. This will include clinical immunology consultants, Biomedical Scientists and research active experts with the chance for students to interact with active practitioners in the field, highlighting employability prospects.. The focus of the coursework is on clinical case studies and is undertaken primarily as group work with a proportion of the marks based on individual and group work contribution assessment thus building resourcefulness and resilience. The coursework culminates in an oral presentation which builds on several empl.oyability skills.
View full module detailsOptional
This module will address four broad topics, namely Integration of Metabolism, Nuclear Receptors, Bioenergetics and Cell Signaling.
View full module detailsThe purpose of this module is for students to propose potential pharmacotherapeutic targets for conditions of their choice. Here the academic staff introduce a signaling pathway, group of receptors, channels, enzymes, they also provide some case studies of areas of targeting. Students then take this knowledge and build on it and through their own research propose a target.
View full module detailsThe module provides a description and demonstration of how the application of the principles of microbial and biochemical sciences, studied elsewhere in the programme, can be used in the discovery, production, and manufacture of commercially important products for the pharmaceutical, food, and chemical industries, with examples and case studies and an intensive experimental section. The principles of genetic and physiological deregulation and overexpression of metabolic products that are discussed in the module build upon the analysis of metabolic pathways (studied in L4 and L5 Biochemistry modules) and the study of microbial diversity, metabolism and function (studied in L4 and L5 Microbiology modules), and complement concepts covered in the Level 6 modules BMS3092 Advanced Technologies in Gene Expression and BMS3070 Systems Biology: Genes in Action. The principles of biomedical and bioveterinary microbial product discovery, over-production and applications are compared to those of other microbial products (food, bioenergy, and (bio)chemical industries).
View full module detailsSystems Biology is widely accepted as a major future direction of biological research. The ethos of Systems Biology is to generate, analyse, and integrate multiple data sets for understanding and modelling a biological system. We want to know the components (molecules) of the system, how they work/interact together, and, ideally, have some quantitation: the abundance of a particular component and/or the rates of action/interaction. Due to technological advances within molecular biology, we are now able to obtain quantitative information about molecules within a biological system on both small and large scales. The purpose of this module is to introduce students to the basic concepts of Systems Biology for health and disease. The module includes subjects relevant to prokaryotic and eukaryotic systems and is thus suitable for all bioscience students. Learning methods include: lectures, seminars, computer practical sessions, article discussion, workshops, and research and problem solving during both lectures and computer-based investigations.
View full module detailsSemester 2
Compulsory
Microbes can be categorised and studied according to a number of characteristics such as their physiology; pathogenicity, and cellular interaction with hosts. This module builds on those themes already covered on the bioscience programmes in dealing with the spread of microbes through populations, and features of host and vector populations that influence this spread.
View full module detailsCore
Gives the student a broad understanding of cancer as an umbrella term for a complex set of different diseases unified by common cellular mechanisms. Students will examine the biological processes underlying cancer and have an appreciation of a range of clinically relevant diagnostic and therapeutic approaches. The emphasis is on human studies and clinical data, with animal studies and cancer-relevant pre-clinical models also presented. This module fits well within a biomedical sciences program.
View full module detailsOptional
The Neuroscience module is following the Neuroscience FHEQ Level 5 which provided the bases in Neuroscience. This second module will run over one semester and will provide students with a comprehensive research-led overview of several current hot topics in Neuroscience built around 4 intricate topics: neuroendocrinology, sleep, neuroplasticity and brain disorders. Emphasis will be placed on integration of knowledge from the different areas presented in the lectures. In addition, evaluation of skills for understanding, synthesis/analysis and interpretation of scientific data will be addressed throughout all research-led lectures and assessments.
View full module detailsThe Biological Rhythms module is designed to provide students with a comprehensive, research-led overview of current topics in Biological Rhythms, with an emphasis on mammalian Chronobiology. The module builds on critical evaluation skills developed in previous modules, including appraisal and interpretation of scientific literature and evaluating current gaps in our knowledge. The module is delivered as a mix of lectures, online content, and several tutorials in which knowledge is integrated and evaluated. The summative assessment of this module consists of two pieces of course work, in which students apply skills in digital literature searches, resourcefulness in evaluating literature and interpreting current knowledge to develop forward-looking views that apply and validate research insights in real world conditions.
View full module detailsThe purpose of this module is to give students a clear view of how and where genetics is used in the ‘real world’. This module will build on the basics of molecular biology and genetics taught in Levels 4 and 5, and will expect students to utilise this prior knowledge and content given in lectures and in the problem-based learning assessments. This module requires application of understanding and problem solving skills.
View full module detailsPharmacokinetics and Toxicology is the science of safety: It is the study of how exogenous chemicals enter and are disposed of by the body, and the effects that they can have on the organ systems of the body. Toxicology is designed to minimise the risk of harm to humans from exposure to any of the thousands of chemicals that we use every day. In this module, we will look at the basic mechanisms of how chemicals may cause harm to living organisms, and some of the testing procedures in place to detect such adverse effects. We will examine the mathematical patterns of drug administration and excretion and learn to explain these and determine their meaning, these concepts will be brought together through a series of case study workshops where mathematical data will be handled and examined.
View full module detailsSemester 1 & 2
Core
The final year research project develops practical, analytical, literature sourcing and presentation skills that have been acquired during the typical undergraduate degree programme. The projects provided as part of this module reflect topics and modes of research that are undertaken in the School of Biosciences based of the expertise of our academic staff and hence cover a wide variety of the United Nation’s Sustainability Development Goals around health, the environment and hunger. Modes of research include laboratory-based; in silico; computational; fieldwork, data-analysis, and grant proposals. Research project allocations are usually made based on students’ indication of their preferred projects from a catalogue provided at the start of the academic year. Students should liaise regularly with their supervisor(s) throughout the academic year as they progress with the research, building their independence as a researcher by searching for information, planning experiments/analysis approaches or formulating grant proposals, analysing data, drawing up conclusions and developing oral and written communication skills: all of which will help them develop employability competencies and skills. Students are expected undertake a critical review of the literature of their topic through literature searches and the use of bibliographic databases, which will help them to develop resourcefulness. Students will build up resilience by directly investigating a scientific question/hypothesis that may include designing their own approach or experimental plan (with support from the supervisor(s)) to investigate the question/hypothesis. The use of statistical software and other digital platforms/specialist analytical software for literature searching/meta-analysis etc will help students increase their digital capability. During any practical or skills development sessions, students will learn how to work in a laboratory, the value of resources, how to work in a laboratory environment and best practice to be sustainable, all of which will help them develop responsibility and global and cultural capabilities The final sign-off for passing the Practical Skills Record is also incorporated into this module.
View full module detailsOptional modules for Year 3 - FHEQ Level 6
Students must choose one optional module per semester.
BSc (Hons) with foundation year
Semester 1 & 2
Compulsory
This year-long module is designed to develop the knowledge, skills, and capabilities that students will require to succeed during undergraduate study in the Biosciences. During the foundation year, students will explore fascinating processes of life, from evolutionary genetics and cells to organ systems, through to human impact on ecosystems. Students will also study topics in chemistry and mathematics, the principles that underpin biological sciences. Students will have many opportunities to put theory into practice through laboratory sessions and fieldwork. Academic skills development is embedded throughout the strands and encourages students to take responsibility for their own learning. In addition to lectures and tutorials, learning takes place in the format of debates, lab and field work, problem-based scenarios and skills-based workshops. Subject-specific content is designed to integrate, for example students apply chemistry skills in biological contexts. Employability skills are coordinated through portfolio activities and reflective tasks, students will interrogate their future discipline and explore academic literature in their field of interest. The module aims to broaden students’ perceived scope of the biosciences, with investigations of themes associated with sustainability. Resilience is built into this module through the strong formative challenges that are present for all coursework. Challenges are set that allow students to make mistakes and learn from them. This feeds into reflective activities that invite students to develop their academic processes, so they are best able to cope with the challenges ahead. Finally, the module takes a strong approach to team-working; learners regularly work with the same small group of peers and this work is directly assessed. Learning about their various peers and how to adapt to working effectively develops students’ cultural awareness and is a key employability skill.
View full module detailsOptional modules for Foundation - FHEQ Level 3
For further information relating to FHEQ levels 4, 5 and 6, including learning outcomes, aims and module information please view the BSc (Hons) Biomedical Science.
Year 1 - BSc (Hons) with placement
Semester 1
Compulsory
The purpose of this module is to introduce students to microorganisms, to the main cellular processes they perform and to how their activities affect humans and the environment. The students learn about microorganisms that cause disease as well as those who have properties we exploit for the benefit of society. Finally through laboratory practical exercises, the students learn and practice a range of basic microbiological techniques, which are essential for the cultivation and study of microorganisms. This module provides students with key skills and a basic broad knowledge of microbiology; a fundamental discipline required for future endeavors in the fields of infectious disease, biotechnology, biomedical science, biological science and other medically-related fields.
View full module detailsThis module will introduce the students to the fundamental biochemistry of life and will provide an understanding of the biological molecules that will inform their studies throughout their degree programme. Students will experience a combination of taught lectures, workshops and practical classes to enhance their learning experience and provide them with the maximum opportunity for success and personal development.
View full module detailsCore
This module introduces students to the structures within a cell and their functions, including an understanding of the processes by which cells divide and die. The module then considers how cell structure and function can be adapted to specialise cells for particular purposes, and begins to consider how different types of cell are able to interact with one another and their environment in order to form higher order structures such as tissues and organs. Overarching these themes are four practical classes which illustrate the way in which cells and tissues can be studied.
View full module detailsIn this module students have the opportunity to explore the cutting-edge of science by engaging with the most newsworthy and contemporary biosciences topics. The students are guided through the development of key employability skills such as literature querying, critical reading and referencing, towards the discovery of a range of highly of high profile topic for their own research (e.g. antimicrobial resistance; decline in bee populations; obesity and diabetes; stem cell research). Working in groups students choose a topic which constitute the focus of their assessment, and learn to leverage on team work and personal resilience. Through the production of a group presentation and an individual summary, students develop important competences in the science communication field which strengthen their employability and academic proficiency.
View full module detailsSemester 2
Compulsory
In this module students will be taken on a learning journey through protein structure and function, and enzymes to emphasize their importance in the biochemical processes that occur in living cells. Students will explore the contributions of lipid molecules and sugars to cellular ATP production, and will be introduced to the important role that the tricarboxylic acid (TCA) and electron transport systems have in production of ATP. Students will undertake enzyme-based practical to develop and enhance concepts taught within the module.
View full module detailsThe purpose of this module is to give a broad introduction to the essential concepts of molecular biology and genetics that are critical to any undergraduate programme in biosciences. We will cover the central dogma of biology: how information is passed from DNA to RNA to protein, and how it is inherited throughout generations. We will examine how genomes are organized and the structure of a gene, initially focusing on prokaryotes. We will discuss the details of DNA replication, transcription and translation and examine some of the key concepts in gene regulation. Students will also be introduced to laboratory and bioinformatic techniques essential for the study of molecular biology. They will also hone their skills in scientific writing through the production of a laboratory report and short essay.
View full module detailsCore
This module aims to introduce students from all backgrounds to the principles of regulation of homeostasis. It provides a foundational knowledge to which principles can be applied in the control of several model systems to maintain homeostasis. The content builds upon content from Cell Biology and Biochemistry in semester 1 of level 4 and this essential knowledge is utilised in multiple modules at levels 5 and 6. Students will develop their practical skills in a number of scenarios, including exercise physiology, use of digital technologies to determine and monitor physiological outputs relating to model systems covered in the content. Laboratory skills are further developed from semester 1, data analysis and use of graphing software is cemented using lab derived data.
View full module detailsThis is a practical module, the aim of which, is to equip students with the critical technical skills used in bacteriology and to familiarize them with key diagnostic tests that are relevant to students on BSc programmes in Biomedical Sciences, Microbiology and Biochemistry. This module builds upon critical concepts and practical techniques covered in BMS1026, and introduces students to a range of medically and environmentally globally important bacteria, and is a key module for the microbiology programme.
View full module detailsYear 2 - BSc (Hons) with placement
Semester 1
Compulsory
This Molecular biology/genetics module builds up on its first-year sister module BMS1047. The key difference from BMS1047 is that it focusses on eukaryotic molecular biology and techniques to evaluate various molecular biology processes, including more genome-wide aspects, and the significance of molecular biology mechanisms in the real world, for e.g., in cancer. Another key difference is that this module covers molecular biology in greater depth, in particular the regulatory aspects of molecular biology. Overall, you will develop oral and written communication skills in molecular biology and genetics and will be able to appreciate the differences between the eukaryotic and prokaryotic molecular systems. Lectures are covered in a block of the following six themes. Advanced human genetics/genomics à The lectures will cover the human genome, natural genetics variations, sequencing genes and genomes, the genotype-phenotype map to include Mendelian genetics/genetic diseases, the transmission of information, and the concept of recombination. Eukaryotic DNA replication à Packaging of DNA, its organization on chromosomes and alignment with the cell cycle (telomeres, crossing over/recombinant). Enzymes needed for DNA replication with a reflection of BMS1047, key differences between Pro- and Eukaryotes, and techniques to study replication. Eukaryotic DNA transcription à Eukaryotic Cis and trans elements in transcription, post-transcription modifications of transcripts and molecular biology methods to study/quantify transcripts, key differences between Pro- and Eukaryotes, enhancer/mediator complex, cDNA synthesis. control of transcription. Post-transcriptional regulation à Molecular mechanisms of splicing, polyadenylation (mechanisms); Cytoplasmic events: RNA export, localization, regulation by lnc/miRNAs, RNA decay. Eukaryotic mRNA translation à Eukaryotic regulation, global and specific regulation of transcription. Techniques to study Eukaryotic translation. regulation of translation by the proteasome. Application of human genetic inheritance and gene expression in cancer, errors in DNA replication & their correction. Practical componentà RNA extraction & quantification, reverse transcription and RT-PCR followed by electrophoresis.
View full module detailsThis module aims to build upon the principles of feedback and basic systems covered at level 4. In this module we go into greater depth about the homeostatic control through the use of nervous, endocrine and other control mechanisms. Students will build upon biochemical principles of receptors and second messengers as key components of feedback mechanisms, applying this to whole-body regulation. Investigation and integration of multiple systems and their response to the same mediator is an essential part of this module. Students will develop their oral and written communication skills within a scientific discipline, enabling them to explain & extrapolate both theoretical knowledge & perform data analysis.
View full module detailsCore
This module is designed to develop an understanding of concepts of bacteriology, protozoology mycology, and virology, with a particular emphasis on pathogenic microbes. Each lecture or group of lectures studies a particular group of microbes. These pathogens are chosen as representative on the basis of their biological characteristics, and also from a global perspective. The module also includes tutorial discussions and laboratory practical classes to further develop deeper understanding and broader application of the topics included in this module. Laboratory sessions will aid your understanding of the theory and enable development of practical and employability skills.
View full module detailsOptional
This module will cover three broad topics, namely Metabolism in Health & Disease (Dr Alfred Thumser & Dr Sarah Bailey), Cell Signalling (Dr Sarah Bailey) and Diabetes mellitus (Dr Matin Whyte & Dr Ben Field)
View full module detailsThis module is designed to introduce the structure and function of the nervous system in animals and humans - with a focus on providing information across different levels of explanation, including single molecules, cellular, neuronal networks and complex behaviours. The students will develop a more in-depth understanding of some aspects linked to the nervous system and brain function introduced in BMS2038. Students will develop their skills in understanding, writing and synthesis of scientific data by presenting published neuroscientific results in a poster or essay format.
View full module detailsSemester 2
Compulsory
The purpose of this module is to provide a conceptual understanding of the key principles of human immunology, including the immune response to infection and foreign antigens. Such an understanding is crucial in many other parts of the programme, including the pathogenicity of infectious disease, oncology and pharmacology. It is a prerequisite for modules at FHEQ level 6 including BMS3054 (Clinical Immunology and Immunohaematology), BMS3102 (Advanced Topics in Cellular and Molecular Immunology) and BMS3104 (Applied Immunology).
View full module detailsThe purpose of the module is to introduce the subject of Pharmacology. They will apply their knowledge of Biochemistry and Physiology to understand the mechanism of action of key current drugs. With a particular focus on the following systems: cardiovascular, neurological, anti-inflammatory, -infectives and -cancer. Students will also consider how the body deals with drugs, namely absorption, distribution, metabolism and excretion (ADME).
View full module detailsCore
The Module will cover a range of topics that will address analytical techniques in research and clinical laboratories, as well as addressing data analysis and statistics.
View full module detailsThis module addresses the essential need for students to understand the concepts of the pathogenesis of major human diseases and provides students with important background knowledge to understand clinical (or analytical) medicine. The contents of this module bridge basic science with the pathology of human disease and medical science including the understanding of the principles of major organ diseases in the human body.
View full module detailsOptional modules for Year 2 (with PTY) - FHEQ Level 5
Students must choose one optional module in semester 1
Year 3 - BSc (Hons) with placement
Semester 1
Compulsory
Core
A series of lectures covering the immunopathology, symptoms, treatment and diagnostic tests for range of clinically relevant diseases in the area of immunology and immunohaematology will be delivered by internal and external experts in the field thus aligning with the United Nation's sustainability development goal 3: Good health and wellbeing. This will include clinical immunology consultants, Biomedical Scientists and research active experts with the chance for students to interact with active practitioners in the field, highlighting employability prospects.. The focus of the coursework is on clinical case studies and is undertaken primarily as group work with a proportion of the marks based on individual and group work contribution assessment thus building resourcefulness and resilience. The coursework culminates in an oral presentation which builds on several empl.oyability skills.
View full module detailsOptional
This module will address four broad topics, namely Integration of Metabolism, Nuclear Receptors, Bioenergetics and Cell Signaling.
View full module detailsThe purpose of this module is for students to propose potential pharmacotherapeutic targets for conditions of their choice. Here the academic staff introduce a signaling pathway, group of receptors, channels, enzymes, they also provide some case studies of areas of targeting. Students then take this knowledge and build on it and through their own research propose a target.
View full module detailsThe module provides a description and demonstration of how the application of the principles of microbial and biochemical sciences, studied elsewhere in the programme, can be used in the discovery, production, and manufacture of commercially important products for the pharmaceutical, food, and chemical industries, with examples and case studies and an intensive experimental section. The principles of genetic and physiological deregulation and overexpression of metabolic products that are discussed in the module build upon the analysis of metabolic pathways (studied in L4 and L5 Biochemistry modules) and the study of microbial diversity, metabolism and function (studied in L4 and L5 Microbiology modules), and complement concepts covered in the Level 6 modules BMS3092 Advanced Technologies in Gene Expression and BMS3070 Systems Biology: Genes in Action. The principles of biomedical and bioveterinary microbial product discovery, over-production and applications are compared to those of other microbial products (food, bioenergy, and (bio)chemical industries).
View full module detailsSystems Biology is widely accepted as a major future direction of biological research. The ethos of Systems Biology is to generate, analyse, and integrate multiple data sets for understanding and modelling a biological system. We want to know the components (molecules) of the system, how they work/interact together, and, ideally, have some quantitation: the abundance of a particular component and/or the rates of action/interaction. Due to technological advances within molecular biology, we are now able to obtain quantitative information about molecules within a biological system on both small and large scales. The purpose of this module is to introduce students to the basic concepts of Systems Biology for health and disease. The module includes subjects relevant to prokaryotic and eukaryotic systems and is thus suitable for all bioscience students. Learning methods include: lectures, seminars, computer practical sessions, article discussion, workshops, and research and problem solving during both lectures and computer-based investigations.
View full module detailsSemester 2
Compulsory
Microbes can be categorised and studied according to a number of characteristics such as their physiology; pathogenicity, and cellular interaction with hosts. This module builds on those themes already covered on the bioscience programmes in dealing with the spread of microbes through populations, and features of host and vector populations that influence this spread.
View full module detailsCore
Gives the student a broad understanding of cancer as an umbrella term for a complex set of different diseases unified by common cellular mechanisms. Students will examine the biological processes underlying cancer and have an appreciation of a range of clinically relevant diagnostic and therapeutic approaches. The emphasis is on human studies and clinical data, with animal studies and cancer-relevant pre-clinical models also presented. This module fits well within a biomedical sciences program.
View full module detailsOptional
The Neuroscience module is following the Neuroscience FHEQ Level 5 which provided the bases in Neuroscience. This second module will run over one semester and will provide students with a comprehensive research-led overview of several current hot topics in Neuroscience built around 4 intricate topics: neuroendocrinology, sleep, neuroplasticity and brain disorders. Emphasis will be placed on integration of knowledge from the different areas presented in the lectures. In addition, evaluation of skills for understanding, synthesis/analysis and interpretation of scientific data will be addressed throughout all research-led lectures and assessments.
View full module detailsThe Biological Rhythms module is designed to provide students with a comprehensive, research-led overview of current topics in Biological Rhythms, with an emphasis on mammalian Chronobiology. The module builds on critical evaluation skills developed in previous modules, including appraisal and interpretation of scientific literature and evaluating current gaps in our knowledge. The module is delivered as a mix of lectures, online content, and several tutorials in which knowledge is integrated and evaluated. The summative assessment of this module consists of two pieces of course work, in which students apply skills in digital literature searches, resourcefulness in evaluating literature and interpreting current knowledge to develop forward-looking views that apply and validate research insights in real world conditions.
View full module detailsThe purpose of this module is to give students a clear view of how and where genetics is used in the ‘real world’. This module will build on the basics of molecular biology and genetics taught in Levels 4 and 5, and will expect students to utilise this prior knowledge and content given in lectures and in the problem-based learning assessments. This module requires application of understanding and problem solving skills.
View full module detailsPharmacokinetics and Toxicology is the science of safety: It is the study of how exogenous chemicals enter and are disposed of by the body, and the effects that they can have on the organ systems of the body. Toxicology is designed to minimise the risk of harm to humans from exposure to any of the thousands of chemicals that we use every day. In this module, we will look at the basic mechanisms of how chemicals may cause harm to living organisms, and some of the testing procedures in place to detect such adverse effects. We will examine the mathematical patterns of drug administration and excretion and learn to explain these and determine their meaning, these concepts will be brought together through a series of case study workshops where mathematical data will be handled and examined.
View full module detailsSemester 1 & 2
Core
The final year research project develops practical, analytical, literature sourcing and presentation skills that have been acquired during the typical undergraduate degree programme. The projects provided as part of this module reflect topics and modes of research that are undertaken in the School of Biosciences based of the expertise of our academic staff and hence cover a wide variety of the United Nation’s Sustainability Development Goals around health, the environment and hunger. Modes of research include laboratory-based; in silico; computational; fieldwork, data-analysis, and grant proposals. Research project allocations are usually made based on students’ indication of their preferred projects from a catalogue provided at the start of the academic year. Students should liaise regularly with their supervisor(s) throughout the academic year as they progress with the research, building their independence as a researcher by searching for information, planning experiments/analysis approaches or formulating grant proposals, analysing data, drawing up conclusions and developing oral and written communication skills: all of which will help them develop employability competencies and skills. Students are expected undertake a critical review of the literature of their topic through literature searches and the use of bibliographic databases, which will help them to develop resourcefulness. Students will build up resilience by directly investigating a scientific question/hypothesis that may include designing their own approach or experimental plan (with support from the supervisor(s)) to investigate the question/hypothesis. The use of statistical software and other digital platforms/specialist analytical software for literature searching/meta-analysis etc will help students increase their digital capability. During any practical or skills development sessions, students will learn how to work in a laboratory, the value of resources, how to work in a laboratory environment and best practice to be sustainable, all of which will help them develop responsibility and global and cultural capabilities The final sign-off for passing the Practical Skills Record is also incorporated into this module.
View full module detailsOptional modules for Year 3 (with PTY) - FHEQ Level 6
Students must choose one optional module per semester.
Year 3 - BSc (Hons) with placement
Semester 1 & 2
Core
This module supports students’ development of personal and professional attitudes and abilities appropriate to a Professional Training placement. It supports and facilitates self-reflection and transfer of learning from their Professional Training placement experiences to their final year of study and their future employment. The PTY module is concerned with Personal and Professional Development towards holistic academic and non-academic learning, and is a process that involves self-reflection, documented via the creation of a personal record, planning and monitoring progress towards the achievement of personal objectives. Development and learning may occur before and during the placement, and this is reflected in the assessment model as a progressive process. However, the graded assessment takes place primarily towards the end of the placement. Additionally, the module aims to enable students to evidence and evaluate their placement experiences and transfer that learning to other situations through written and presentation skills.
View full module detailsBSc (Hons) with foundation year and placement
Semester 1 & 2
Compulsory
This year-long module is designed to develop the knowledge, skills, and capabilities that students will require to succeed during undergraduate study in the Biosciences. During the foundation year, students will explore fascinating processes of life, from evolutionary genetics and cells to organ systems, through to human impact on ecosystems. Students will also study topics in chemistry and mathematics, the principles that underpin biological sciences. Students will have many opportunities to put theory into practice through laboratory sessions and fieldwork. Academic skills development is embedded throughout the strands and encourages students to take responsibility for their own learning. In addition to lectures and tutorials, learning takes place in the format of debates, lab and field work, problem-based scenarios and skills-based workshops. Subject-specific content is designed to integrate, for example students apply chemistry skills in biological contexts. Employability skills are coordinated through portfolio activities and reflective tasks, students will interrogate their future discipline and explore academic literature in their field of interest. The module aims to broaden students’ perceived scope of the biosciences, with investigations of themes associated with sustainability. Resilience is built into this module through the strong formative challenges that are present for all coursework. Challenges are set that allow students to make mistakes and learn from them. This feeds into reflective activities that invite students to develop their academic processes, so they are best able to cope with the challenges ahead. Finally, the module takes a strong approach to team-working; learners regularly work with the same small group of peers and this work is directly assessed. Learning about their various peers and how to adapt to working effectively develops students’ cultural awareness and is a key employability skill.
View full module detailsOptional modules for Foundation (with PTY) - FHEQ Level 3
For further information relating to FHEQ levels 4, 5 and 6 and the professional training year, including learning outcomes, aims and module information please view the BSc (Hons) Biomedical Science.
Year 1 - MSci (Hons)
Semester 1
Compulsory
The purpose of this module is to introduce students to microorganisms, to the main cellular processes they perform and to how their activities affect humans and the environment. The students learn about microorganisms that cause disease as well as those who have properties we exploit for the benefit of society. Finally through laboratory practical exercises, the students learn and practice a range of basic microbiological techniques, which are essential for the cultivation and study of microorganisms. This module provides students with key skills and a basic broad knowledge of microbiology; a fundamental discipline required for future endeavors in the fields of infectious disease, biotechnology, biomedical science, biological science and other medically-related fields.
View full module detailsThis module will introduce the students to the fundamental biochemistry of life and will provide an understanding of the biological molecules that will inform their studies throughout their degree programme. Students will experience a combination of taught lectures, workshops and practical classes to enhance their learning experience and provide them with the maximum opportunity for success and personal development.
View full module detailsCore
In this module students have the opportunity to explore the cutting-edge of science by engaging with the most newsworthy and contemporary biosciences topics. The students are guided through the development of key employability skills such as literature querying, critical reading and referencing, towards the discovery of a range of highly of high profile topic for their own research (e.g. antimicrobial resistance; decline in bee populations; obesity and diabetes; stem cell research). Working in groups students choose a topic which constitute the focus of their assessment, and learn to leverage on team work and personal resilience. Through the production of a group presentation and an individual summary, students develop important competences in the science communication field which strengthen their employability and academic proficiency.
View full module detailsThis module introduces students to the structures within a cell and their functions, including an understanding of the processes by which cells divide and die. The module then considers how cell structure and function can be adapted to specialise cells for particular purposes, and begins to consider how different types of cell are able to interact with one another and their environment in order to form higher order structures such as tissues and organs. Overarching these themes are four practical classes which illustrate the way in which cells and tissues can be studied.
View full module detailsSemester 2
Compulsory
The purpose of this module is to give a broad introduction to the essential concepts of molecular biology and genetics that are critical to any undergraduate programme in biosciences. We will cover the central dogma of biology: how information is passed from DNA to RNA to protein, and how it is inherited throughout generations. We will examine how genomes are organized and the structure of a gene, initially focusing on prokaryotes. We will discuss the details of DNA replication, transcription and translation and examine some of the key concepts in gene regulation. Students will also be introduced to laboratory and bioinformatic techniques essential for the study of molecular biology. They will also hone their skills in scientific writing through the production of a laboratory report and short essay.
View full module detailsIn this module students will be taken on a learning journey through protein structure and function, and enzymes to emphasize their importance in the biochemical processes that occur in living cells. Students will explore the contributions of lipid molecules and sugars to cellular ATP production, and will be introduced to the important role that the tricarboxylic acid (TCA) and electron transport systems have in production of ATP. Students will undertake enzyme-based practical to develop and enhance concepts taught within the module.
View full module detailsCore
This module aims to introduce students from all backgrounds to the principles of regulation of homeostasis. It provides a foundational knowledge to which principles can be applied in the control of several model systems to maintain homeostasis. The content builds upon content from Cell Biology and Biochemistry in semester 1 of level 4 and this essential knowledge is utilised in multiple modules at levels 5 and 6. Students will develop their practical skills in a number of scenarios, including exercise physiology, use of digital technologies to determine and monitor physiological outputs relating to model systems covered in the content. Laboratory skills are further developed from semester 1, data analysis and use of graphing software is cemented using lab derived data.
View full module detailsThis is a practical module, the aim of which, is to equip students with the critical technical skills used in bacteriology and to familiarize them with key diagnostic tests that are relevant to students on BSc programmes in Biomedical Sciences, Microbiology and Biochemistry. This module builds upon critical concepts and practical techniques covered in BMS1026, and introduces students to a range of medically and environmentally globally important bacteria, and is a key module for the microbiology programme.
View full module detailsYear 2 - MSci (Hons)
Semester 1
Compulsory
This Molecular biology/genetics module builds up on its first-year sister module BMS1047. The key difference from BMS1047 is that it focusses on eukaryotic molecular biology and techniques to evaluate various molecular biology processes, including more genome-wide aspects, and the significance of molecular biology mechanisms in the real world, for e.g., in cancer. Another key difference is that this module covers molecular biology in greater depth, in particular the regulatory aspects of molecular biology. Overall, you will develop oral and written communication skills in molecular biology and genetics and will be able to appreciate the differences between the eukaryotic and prokaryotic molecular systems. Lectures are covered in a block of the following six themes. Advanced human genetics/genomics à The lectures will cover the human genome, natural genetics variations, sequencing genes and genomes, the genotype-phenotype map to include Mendelian genetics/genetic diseases, the transmission of information, and the concept of recombination. Eukaryotic DNA replication à Packaging of DNA, its organization on chromosomes and alignment with the cell cycle (telomeres, crossing over/recombinant). Enzymes needed for DNA replication with a reflection of BMS1047, key differences between Pro- and Eukaryotes, and techniques to study replication. Eukaryotic DNA transcription à Eukaryotic Cis and trans elements in transcription, post-transcription modifications of transcripts and molecular biology methods to study/quantify transcripts, key differences between Pro- and Eukaryotes, enhancer/mediator complex, cDNA synthesis. control of transcription. Post-transcriptional regulation à Molecular mechanisms of splicing, polyadenylation (mechanisms); Cytoplasmic events: RNA export, localization, regulation by lnc/miRNAs, RNA decay. Eukaryotic mRNA translation à Eukaryotic regulation, global and specific regulation of transcription. Techniques to study Eukaryotic translation. regulation of translation by the proteasome. Application of human genetic inheritance and gene expression in cancer, errors in DNA replication & their correction. Practical componentà RNA extraction & quantification, reverse transcription and RT-PCR followed by electrophoresis.
View full module detailsThis module aims to build upon the principles of feedback and basic systems covered at level 4. In this module we go into greater depth about the homeostatic control through the use of nervous, endocrine and other control mechanisms. Students will build upon biochemical principles of receptors and second messengers as key components of feedback mechanisms, applying this to whole-body regulation. Investigation and integration of multiple systems and their response to the same mediator is an essential part of this module. Students will develop their oral and written communication skills within a scientific discipline, enabling them to explain & extrapolate both theoretical knowledge & perform data analysis.
View full module detailsCore
This module is designed to develop an understanding of concepts of bacteriology, protozoology mycology, and virology, with a particular emphasis on pathogenic microbes. Each lecture or group of lectures studies a particular group of microbes. These pathogens are chosen as representative on the basis of their biological characteristics, and also from a global perspective. The module also includes tutorial discussions and laboratory practical classes to further develop deeper understanding and broader application of the topics included in this module. Laboratory sessions will aid your understanding of the theory and enable development of practical and employability skills.
View full module detailsOptional
This module will cover three broad topics, namely Metabolism in Health & Disease (Dr Alfred Thumser & Dr Sarah Bailey), Cell Signalling (Dr Sarah Bailey) and Diabetes mellitus (Dr Matin Whyte & Dr Ben Field)
View full module detailsThis module is designed to introduce the structure and function of the nervous system in animals and humans - with a focus on providing information across different levels of explanation, including single molecules, cellular, neuronal networks and complex behaviours. The students will develop a more in-depth understanding of some aspects linked to the nervous system and brain function introduced in BMS2038. Students will develop their skills in understanding, writing and synthesis of scientific data by presenting published neuroscientific results in a poster or essay format.
View full module detailsSemester 2
Compulsory
The purpose of this module is to provide a conceptual understanding of the key principles of human immunology, including the immune response to infection and foreign antigens. Such an understanding is crucial in many other parts of the programme, including the pathogenicity of infectious disease, oncology and pharmacology. It is a prerequisite for modules at FHEQ level 6 including BMS3054 (Clinical Immunology and Immunohaematology), BMS3102 (Advanced Topics in Cellular and Molecular Immunology) and BMS3104 (Applied Immunology).
View full module detailsThe purpose of the module is to introduce the subject of Pharmacology. They will apply their knowledge of Biochemistry and Physiology to understand the mechanism of action of key current drugs. With a particular focus on the following systems: cardiovascular, neurological, anti-inflammatory, -infectives and -cancer. Students will also consider how the body deals with drugs, namely absorption, distribution, metabolism and excretion (ADME).
View full module detailsCore
The Module will cover a range of topics that will address analytical techniques in research and clinical laboratories, as well as addressing data analysis and statistics.
View full module detailsThis module addresses the essential need for students to understand the concepts of the pathogenesis of major human diseases and provides students with important background knowledge to understand clinical (or analytical) medicine. The contents of this module bridge basic science with the pathology of human disease and medical science including the understanding of the principles of major organ diseases in the human body.
View full module detailsOptional modules for Year 2 - FHEQ Level 5
Students must choose one optional module in semester 1
Year 3 - MSci (Hons)
Semester 1
Compulsory
Core
A series of lectures covering the immunopathology, symptoms, treatment and diagnostic tests for range of clinically relevant diseases in the area of immunology and immunohaematology will be delivered by internal and external experts in the field thus aligning with the United Nation's sustainability development goal 3: Good health and wellbeing. This will include clinical immunology consultants, Biomedical Scientists and research active experts with the chance for students to interact with active practitioners in the field, highlighting employability prospects.. The focus of the coursework is on clinical case studies and is undertaken primarily as group work with a proportion of the marks based on individual and group work contribution assessment thus building resourcefulness and resilience. The coursework culminates in an oral presentation which builds on several empl.oyability skills.
View full module detailsOptional
This module will address four broad topics, namely Integration of Metabolism, Nuclear Receptors, Bioenergetics and Cell Signaling.
View full module detailsThe purpose of this module is for students to propose potential pharmacotherapeutic targets for conditions of their choice. Here the academic staff introduce a signaling pathway, group of receptors, channels, enzymes, they also provide some case studies of areas of targeting. Students then take this knowledge and build on it and through their own research propose a target.
View full module detailsThe module provides a description and demonstration of how the application of the principles of microbial and biochemical sciences, studied elsewhere in the programme, can be used in the discovery, production, and manufacture of commercially important products for the pharmaceutical, food, and chemical industries, with examples and case studies and an intensive experimental section. The principles of genetic and physiological deregulation and overexpression of metabolic products that are discussed in the module build upon the analysis of metabolic pathways (studied in L4 and L5 Biochemistry modules) and the study of microbial diversity, metabolism and function (studied in L4 and L5 Microbiology modules), and complement concepts covered in the Level 6 modules BMS3092 Advanced Technologies in Gene Expression and BMS3070 Systems Biology: Genes in Action. The principles of biomedical and bioveterinary microbial product discovery, over-production and applications are compared to those of other microbial products (food, bioenergy, and (bio)chemical industries).
View full module detailsSystems Biology is widely accepted as a major future direction of biological research. The ethos of Systems Biology is to generate, analyse, and integrate multiple data sets for understanding and modelling a biological system. We want to know the components (molecules) of the system, how they work/interact together, and, ideally, have some quantitation: the abundance of a particular component and/or the rates of action/interaction. Due to technological advances within molecular biology, we are now able to obtain quantitative information about molecules within a biological system on both small and large scales. The purpose of this module is to introduce students to the basic concepts of Systems Biology for health and disease. The module includes subjects relevant to prokaryotic and eukaryotic systems and is thus suitable for all bioscience students. Learning methods include: lectures, seminars, computer practical sessions, article discussion, workshops, and research and problem solving during both lectures and computer-based investigations.
View full module detailsSemester 2
Compulsory
Microbes can be categorised and studied according to a number of characteristics such as their physiology; pathogenicity, and cellular interaction with hosts. This module builds on those themes already covered on the bioscience programmes in dealing with the spread of microbes through populations, and features of host and vector populations that influence this spread.
View full module detailsCore
Gives the student a broad understanding of cancer as an umbrella term for a complex set of different diseases unified by common cellular mechanisms. Students will examine the biological processes underlying cancer and have an appreciation of a range of clinically relevant diagnostic and therapeutic approaches. The emphasis is on human studies and clinical data, with animal studies and cancer-relevant pre-clinical models also presented. This module fits well within a biomedical sciences program.
View full module detailsOptional
The Neuroscience module is following the Neuroscience FHEQ Level 5 which provided the bases in Neuroscience. This second module will run over one semester and will provide students with a comprehensive research-led overview of several current hot topics in Neuroscience built around 4 intricate topics: neuroendocrinology, sleep, neuroplasticity and brain disorders. Emphasis will be placed on integration of knowledge from the different areas presented in the lectures. In addition, evaluation of skills for understanding, synthesis/analysis and interpretation of scientific data will be addressed throughout all research-led lectures and assessments.
View full module detailsThe purpose of this module is to give students a clear view of how and where genetics is used in the ‘real world’. This module will build on the basics of molecular biology and genetics taught in Levels 4 and 5, and will expect students to utilise this prior knowledge and content given in lectures and in the problem-based learning assessments. This module requires application of understanding and problem solving skills.
View full module detailsPharmacokinetics and Toxicology is the science of safety: It is the study of how exogenous chemicals enter and are disposed of by the body, and the effects that they can have on the organ systems of the body. Toxicology is designed to minimise the risk of harm to humans from exposure to any of the thousands of chemicals that we use every day. In this module, we will look at the basic mechanisms of how chemicals may cause harm to living organisms, and some of the testing procedures in place to detect such adverse effects. We will examine the mathematical patterns of drug administration and excretion and learn to explain these and determine their meaning, these concepts will be brought together through a series of case study workshops where mathematical data will be handled and examined.
View full module detailsThe Biological Rhythms module is designed to provide students with a comprehensive, research-led overview of current topics in Biological Rhythms, with an emphasis on mammalian Chronobiology. The module builds on critical evaluation skills developed in previous modules, including appraisal and interpretation of scientific literature and evaluating current gaps in our knowledge. The module is delivered as a mix of lectures, online content, and several tutorials in which knowledge is integrated and evaluated. The summative assessment of this module consists of two pieces of course work, in which students apply skills in digital literature searches, resourcefulness in evaluating literature and interpreting current knowledge to develop forward-looking views that apply and validate research insights in real world conditions.
View full module detailsSemester 1 & 2
Core
The final year research project develops practical, analytical, literature sourcing and presentation skills that have been acquired during the typical undergraduate degree programme. The projects provided as part of this module reflect topics and modes of research that are undertaken in the School of Biosciences based of the expertise of our academic staff and hence cover a wide variety of the United Nation’s Sustainability Development Goals around health, the environment and hunger. Modes of research include laboratory-based; in silico; computational; fieldwork, data-analysis, and grant proposals. Research project allocations are usually made based on students’ indication of their preferred projects from a catalogue provided at the start of the academic year. Students should liaise regularly with their supervisor(s) throughout the academic year as they progress with the research, building their independence as a researcher by searching for information, planning experiments/analysis approaches or formulating grant proposals, analysing data, drawing up conclusions and developing oral and written communication skills: all of which will help them develop employability competencies and skills. Students are expected undertake a critical review of the literature of their topic through literature searches and the use of bibliographic databases, which will help them to develop resourcefulness. Students will build up resilience by directly investigating a scientific question/hypothesis that may include designing their own approach or experimental plan (with support from the supervisor(s)) to investigate the question/hypothesis. The use of statistical software and other digital platforms/specialist analytical software for literature searching/meta-analysis etc will help students increase their digital capability. During any practical or skills development sessions, students will learn how to work in a laboratory, the value of resources, how to work in a laboratory environment and best practice to be sustainable, all of which will help them develop responsibility and global and cultural capabilities The final sign-off for passing the Practical Skills Record is also incorporated into this module.
View full module detailsOptional modules for Year 3 - FHEQ Level 6
Students must choose one optional module per semester.
Year 4 - MSci (Hons)
Semester 1
Compulsory
In this module, students will work in teams and individually to evaluate and propose approaches to authentic, real-world, scenarios in biomedical research. The students will work with the academic facilitator to understand the basis of the research problem. The students will propose a critical experimental plan, incorporating a range of appropriate biochemical techniques. It is expected that the work will include details of cell lines or experimental models used, how experiments will be controlled, replicated, and evaluated, and which statistical models would be appropriate for the methods under discussion. We will keep a critical and evaluative research record of both team and individual efforts and students will have consolidation weeks to reflect on their experimental proposals and critically improve their work with our feedback. This module will require integration of knowledge you developed in the first 3 years of your program. In general, the module will help build valuable skills towards the Research Dissertation or Advanced Research Project Modules in this final year, as well as help you navigate challenges and scientific problems in your future workplace.
View full module detailsThis module is designed to cover the pathogenesis aspects of a broad range of diseases that affect cells; tissues, and organs. Emphasis is placed on pathological conditions (both cancer and non-cancer disease) which are prevalent in various societies and cultures, and different genders, how these diseases emerge at molecular levels and what type of anomalies they cause together with the clinical challenge to detect and treat them. You will familiarise themselves with various clinical and laboratory diagnostic techniques, together with research that aims to improve your understanding of these diseases at the cellular and molecular level and their diagnoses. This will be vital in developing critical thinking about disease aetiology, their progression and how they can be targeted through novel therapies. A range of transferrable and professional skills are included in the module, including pathological evaluation, and the use of reference ranges in identifying abnormal results. Expert lecturers (both clinically trained and basic scientists) will cover detailed case studies of different diseases, with assessments designed to encourage independent further study of diseases not covered in the main lecture Programme. This blend of lectures from expert clinicians/non-clinicians supplemented by highly focused tutorials will ensure that you not only develop an advanced understanding of the molecular mechanisms underlying the emergence of diseases but are able to assess, appraise, criticize, and formulate hypotheses on how to develop next generation of highly effective precision medicine-based treatment approaches for disease diagnosis and treatment. This module complements other modules at level 7, namely Molecular Medicine and Infectious diseases and provides an excellent synergy in developing critical thinking on disease diagnosis, prognosis and therapeutics.
View full module detailsSemester 2
Compulsory
The ability to appraise scientific literature and to communicate ideas is an academic and professional skill required across many areas of the biosciences. Journal clubs are convened in research and clinical environments and are used by professionals to continue to update knowledge of their disciplines and to maintain competencies as scientists; educators, and clinicians. The ability to distil and critique literature into a short review is also an important skill for the ongoing development of professionals in this area. By Level 7, students will already have a sound understanding of the importance of valid scientific information, and the role of the peer-review process in assuring rigour and integrity. This module develops skills in critical appraisal of scientific literature through a journal club whereby recent publications across a representative range of biomedical science disciplines are discussed in regular sessions facilitated by research students; post-doctoral, and academic staff. A literature review of an appropriate biomedical topic will further develop approaches to using online databases and selecting appropriate publications, together with writing skills. The progress of this piece of work is supported by one-to-one tutorials.
View full module detailsThis is an introductory course on bioinformatics and data science aimed at medical and life sciences undergraduate and postgraduade students that did not have previous exposure to quantitative methodologies. There are no pre-requisites in terms of advanced algebra, calculus, probability theory, statistics or computer programming. Computer programming (coding) and data science are salient skills needed for securing academic and industry jobs. Worldwide, the bioinformatics job market has experienced robust growth over the last decade. In the UK, there is chronic deficit of bioinformaticians as documented by the government's "Full review of the Shortage Occupation List" Bioinformatics and Data Science underlies many academic disciplines and score highly among the most useful skills you will learn in your degree. In the Life and Health Sciences, Bioinformatics and Data Science is essential for epidemiologists, geneticists, biologists, and biomedical scientists to convert research questions into testable statistical models, and to produce interpretable, reproducible, and valid results. This module introduces both facets of study design and data analysis with the aim of enabling graduate students to independently make scientific investigations in a coherent and reproducible way, and to apply notions of causality, statistical inference, and artificial intelligence. It also provides practical hands-on experience conducting computational genomics and gene expression analyses, two bioinformatics skills in high demand worldwide
View full module detailsSemester 1 & 2
Core
This module provides in-depth training in laboratory investigation and the associated skills that are at the heart of Level 7 studies: the aim of the program is to allow students to “develop critical and analytical skills such that they can identify problems, formulate hypotheses, design experiments, acquire and interpret data and draw conclusions.” These are implicit in the successful completion of a research project. Students are involved in the projects from their inception and may also continue with their Level 6 dissertation project provided that there is scope to create new hypotheses and avoid overlap with previous work – work to be assessed in this module must be completely distinct from any work assessed as part of Level 6 modules. During the extended research project students perform much of the work independently (although under academic supervision for guidance and support). The project will normally be laboratory based – alternatives include data analysis projects; bioinformatics, and in silico projects. They must contain a substantial proportion of original work and generate original data sets. Surveys, repetition of other work, or evaluation of test kits or other established procedures are not, in themselves, sufficient, although they may form the starting point for an acceptable project. The Advanced Research Project is designed to build upon undergraduate experience and to further develop research skills that enhance student employability within the Biomedical Sciences. Students will develop independent experimental design and critical data analysis skills and learn to present their results in both written and verbal formats. Students will acquire data analysis skills that will enhance their digital capabilities. They will gain experience of modern statistical analysis software and up-to-date digital bioinformatics tools. Projects could also include the development and application of coding such as R and Python for data analysis. Projects provided by academic research-active staff will reflect current state-of-the-art research being performed within the School, which is aligned with current global and cultural challenges in providing sustained lifelong health. Overall, the module is designed to provide our Biomedical Science MSci graduates with the scientific and research resourcefulness and resilience that will equip them with the necessary skills and experience for successful careers in Biomedical Science.
View full module detailsYear 1 - MSci (Hons) with placement
Semester 1
Compulsory
The purpose of this module is to introduce students to microorganisms, to the main cellular processes they perform and to how their activities affect humans and the environment. The students learn about microorganisms that cause disease as well as those who have properties we exploit for the benefit of society. Finally through laboratory practical exercises, the students learn and practice a range of basic microbiological techniques, which are essential for the cultivation and study of microorganisms. This module provides students with key skills and a basic broad knowledge of microbiology; a fundamental discipline required for future endeavors in the fields of infectious disease, biotechnology, biomedical science, biological science and other medically-related fields.
View full module detailsThis module will introduce the students to the fundamental biochemistry of life and will provide an understanding of the biological molecules that will inform their studies throughout their degree programme. Students will experience a combination of taught lectures, workshops and practical classes to enhance their learning experience and provide them with the maximum opportunity for success and personal development.
View full module detailsCore
In this module students have the opportunity to explore the cutting-edge of science by engaging with the most newsworthy and contemporary biosciences topics. The students are guided through the development of key employability skills such as literature querying, critical reading and referencing, towards the discovery of a range of highly of high profile topic for their own research (e.g. antimicrobial resistance; decline in bee populations; obesity and diabetes; stem cell research). Working in groups students choose a topic which constitute the focus of their assessment, and learn to leverage on team work and personal resilience. Through the production of a group presentation and an individual summary, students develop important competences in the science communication field which strengthen their employability and academic proficiency.
View full module detailsThis module introduces students to the structures within a cell and their functions, including an understanding of the processes by which cells divide and die. The module then considers how cell structure and function can be adapted to specialise cells for particular purposes, and begins to consider how different types of cell are able to interact with one another and their environment in order to form higher order structures such as tissues and organs. Overarching these themes are four practical classes which illustrate the way in which cells and tissues can be studied.
View full module detailsSemester 2
Compulsory
The purpose of this module is to give a broad introduction to the essential concepts of molecular biology and genetics that are critical to any undergraduate programme in biosciences. We will cover the central dogma of biology: how information is passed from DNA to RNA to protein, and how it is inherited throughout generations. We will examine how genomes are organized and the structure of a gene, initially focusing on prokaryotes. We will discuss the details of DNA replication, transcription and translation and examine some of the key concepts in gene regulation. Students will also be introduced to laboratory and bioinformatic techniques essential for the study of molecular biology. They will also hone their skills in scientific writing through the production of a laboratory report and short essay.
View full module detailsIn this module students will be taken on a learning journey through protein structure and function, and enzymes to emphasize their importance in the biochemical processes that occur in living cells. Students will explore the contributions of lipid molecules and sugars to cellular ATP production, and will be introduced to the important role that the tricarboxylic acid (TCA) and electron transport systems have in production of ATP. Students will undertake enzyme-based practical to develop and enhance concepts taught within the module.
View full module detailsCore
This module aims to introduce students from all backgrounds to the principles of regulation of homeostasis. It provides a foundational knowledge to which principles can be applied in the control of several model systems to maintain homeostasis. The content builds upon content from Cell Biology and Biochemistry in semester 1 of level 4 and this essential knowledge is utilised in multiple modules at levels 5 and 6. Students will develop their practical skills in a number of scenarios, including exercise physiology, use of digital technologies to determine and monitor physiological outputs relating to model systems covered in the content. Laboratory skills are further developed from semester 1, data analysis and use of graphing software is cemented using lab derived data.
View full module detailsThis is a practical module, the aim of which, is to equip students with the critical technical skills used in bacteriology and to familiarize them with key diagnostic tests that are relevant to students on BSc programmes in Biomedical Sciences, Microbiology and Biochemistry. This module builds upon critical concepts and practical techniques covered in BMS1026, and introduces students to a range of medically and environmentally globally important bacteria, and is a key module for the microbiology programme.
View full module detailsYear 2 - MSci (Hons) with placement
Semester 1
Compulsory
This Molecular biology/genetics module builds up on its first-year sister module BMS1047. The key difference from BMS1047 is that it focusses on eukaryotic molecular biology and techniques to evaluate various molecular biology processes, including more genome-wide aspects, and the significance of molecular biology mechanisms in the real world, for e.g., in cancer. Another key difference is that this module covers molecular biology in greater depth, in particular the regulatory aspects of molecular biology. Overall, you will develop oral and written communication skills in molecular biology and genetics and will be able to appreciate the differences between the eukaryotic and prokaryotic molecular systems. Lectures are covered in a block of the following six themes. Advanced human genetics/genomics à The lectures will cover the human genome, natural genetics variations, sequencing genes and genomes, the genotype-phenotype map to include Mendelian genetics/genetic diseases, the transmission of information, and the concept of recombination. Eukaryotic DNA replication à Packaging of DNA, its organization on chromosomes and alignment with the cell cycle (telomeres, crossing over/recombinant). Enzymes needed for DNA replication with a reflection of BMS1047, key differences between Pro- and Eukaryotes, and techniques to study replication. Eukaryotic DNA transcription à Eukaryotic Cis and trans elements in transcription, post-transcription modifications of transcripts and molecular biology methods to study/quantify transcripts, key differences between Pro- and Eukaryotes, enhancer/mediator complex, cDNA synthesis. control of transcription. Post-transcriptional regulation à Molecular mechanisms of splicing, polyadenylation (mechanisms); Cytoplasmic events: RNA export, localization, regulation by lnc/miRNAs, RNA decay. Eukaryotic mRNA translation à Eukaryotic regulation, global and specific regulation of transcription. Techniques to study Eukaryotic translation. regulation of translation by the proteasome. Application of human genetic inheritance and gene expression in cancer, errors in DNA replication & their correction. Practical componentà RNA extraction & quantification, reverse transcription and RT-PCR followed by electrophoresis.
View full module detailsThis module aims to build upon the principles of feedback and basic systems covered at level 4. In this module we go into greater depth about the homeostatic control through the use of nervous, endocrine and other control mechanisms. Students will build upon biochemical principles of receptors and second messengers as key components of feedback mechanisms, applying this to whole-body regulation. Investigation and integration of multiple systems and their response to the same mediator is an essential part of this module. Students will develop their oral and written communication skills within a scientific discipline, enabling them to explain & extrapolate both theoretical knowledge & perform data analysis.
View full module detailsCore
This module is designed to develop an understanding of concepts of bacteriology, protozoology mycology, and virology, with a particular emphasis on pathogenic microbes. Each lecture or group of lectures studies a particular group of microbes. These pathogens are chosen as representative on the basis of their biological characteristics, and also from a global perspective. The module also includes tutorial discussions and laboratory practical classes to further develop deeper understanding and broader application of the topics included in this module. Laboratory sessions will aid your understanding of the theory and enable development of practical and employability skills.
View full module detailsOptional
This module will cover three broad topics, namely Metabolism in Health & Disease (Dr Alfred Thumser & Dr Sarah Bailey), Cell Signalling (Dr Sarah Bailey) and Diabetes mellitus (Dr Matin Whyte & Dr Ben Field)
View full module detailsThis module is designed to introduce the structure and function of the nervous system in animals and humans - with a focus on providing information across different levels of explanation, including single molecules, cellular, neuronal networks and complex behaviours. The students will develop a more in-depth understanding of some aspects linked to the nervous system and brain function introduced in BMS2038. Students will develop their skills in understanding, writing and synthesis of scientific data by presenting published neuroscientific results in a poster or essay format.
View full module detailsSemester 2
Compulsory
The purpose of this module is to provide a conceptual understanding of the key principles of human immunology, including the immune response to infection and foreign antigens. Such an understanding is crucial in many other parts of the programme, including the pathogenicity of infectious disease, oncology and pharmacology. It is a prerequisite for modules at FHEQ level 6 including BMS3054 (Clinical Immunology and Immunohaematology), BMS3102 (Advanced Topics in Cellular and Molecular Immunology) and BMS3104 (Applied Immunology).
View full module detailsThe purpose of the module is to introduce the subject of Pharmacology. They will apply their knowledge of Biochemistry and Physiology to understand the mechanism of action of key current drugs. With a particular focus on the following systems: cardiovascular, neurological, anti-inflammatory, -infectives and -cancer. Students will also consider how the body deals with drugs, namely absorption, distribution, metabolism and excretion (ADME).
View full module detailsCore
The Module will cover a range of topics that will address analytical techniques in research and clinical laboratories, as well as addressing data analysis and statistics.
View full module detailsThis module addresses the essential need for students to understand the concepts of the pathogenesis of major human diseases and provides students with important background knowledge to understand clinical (or analytical) medicine. The contents of this module bridge basic science with the pathology of human disease and medical science including the understanding of the principles of major organ diseases in the human body.
View full module detailsOptional modules for Year 2 (with PTY) - FHEQ Level 5
Students must choose one optional module in semester 1
Year 3 - MSci (Hons) with placement
Semester 1
Compulsory
Core
A series of lectures covering the immunopathology, symptoms, treatment and diagnostic tests for range of clinically relevant diseases in the area of immunology and immunohaematology will be delivered by internal and external experts in the field thus aligning with the United Nation's sustainability development goal 3: Good health and wellbeing. This will include clinical immunology consultants, Biomedical Scientists and research active experts with the chance for students to interact with active practitioners in the field, highlighting employability prospects.. The focus of the coursework is on clinical case studies and is undertaken primarily as group work with a proportion of the marks based on individual and group work contribution assessment thus building resourcefulness and resilience. The coursework culminates in an oral presentation which builds on several empl.oyability skills.
View full module detailsOptional
This module will address four broad topics, namely Integration of Metabolism, Nuclear Receptors, Bioenergetics and Cell Signaling.
View full module detailsThe purpose of this module is for students to propose potential pharmacotherapeutic targets for conditions of their choice. Here the academic staff introduce a signaling pathway, group of receptors, channels, enzymes, they also provide some case studies of areas of targeting. Students then take this knowledge and build on it and through their own research propose a target.
View full module detailsThe module provides a description and demonstration of how the application of the principles of microbial and biochemical sciences, studied elsewhere in the programme, can be used in the discovery, production, and manufacture of commercially important products for the pharmaceutical, food, and chemical industries, with examples and case studies and an intensive experimental section. The principles of genetic and physiological deregulation and overexpression of metabolic products that are discussed in the module build upon the analysis of metabolic pathways (studied in L4 and L5 Biochemistry modules) and the study of microbial diversity, metabolism and function (studied in L4 and L5 Microbiology modules), and complement concepts covered in the Level 6 modules BMS3092 Advanced Technologies in Gene Expression and BMS3070 Systems Biology: Genes in Action. The principles of biomedical and bioveterinary microbial product discovery, over-production and applications are compared to those of other microbial products (food, bioenergy, and (bio)chemical industries).
View full module detailsSystems Biology is widely accepted as a major future direction of biological research. The ethos of Systems Biology is to generate, analyse, and integrate multiple data sets for understanding and modelling a biological system. We want to know the components (molecules) of the system, how they work/interact together, and, ideally, have some quantitation: the abundance of a particular component and/or the rates of action/interaction. Due to technological advances within molecular biology, we are now able to obtain quantitative information about molecules within a biological system on both small and large scales. The purpose of this module is to introduce students to the basic concepts of Systems Biology for health and disease. The module includes subjects relevant to prokaryotic and eukaryotic systems and is thus suitable for all bioscience students. Learning methods include: lectures, seminars, computer practical sessions, article discussion, workshops, and research and problem solving during both lectures and computer-based investigations.
View full module detailsSemester 2
Compulsory
Microbes can be categorised and studied according to a number of characteristics such as their physiology; pathogenicity, and cellular interaction with hosts. This module builds on those themes already covered on the bioscience programmes in dealing with the spread of microbes through populations, and features of host and vector populations that influence this spread.
View full module detailsCore
Gives the student a broad understanding of cancer as an umbrella term for a complex set of different diseases unified by common cellular mechanisms. Students will examine the biological processes underlying cancer and have an appreciation of a range of clinically relevant diagnostic and therapeutic approaches. The emphasis is on human studies and clinical data, with animal studies and cancer-relevant pre-clinical models also presented. This module fits well within a biomedical sciences program.
View full module detailsOptional
The Neuroscience module is following the Neuroscience FHEQ Level 5 which provided the bases in Neuroscience. This second module will run over one semester and will provide students with a comprehensive research-led overview of several current hot topics in Neuroscience built around 4 intricate topics: neuroendocrinology, sleep, neuroplasticity and brain disorders. Emphasis will be placed on integration of knowledge from the different areas presented in the lectures. In addition, evaluation of skills for understanding, synthesis/analysis and interpretation of scientific data will be addressed throughout all research-led lectures and assessments.
View full module detailsThe purpose of this module is to give students a clear view of how and where genetics is used in the ‘real world’. This module will build on the basics of molecular biology and genetics taught in Levels 4 and 5, and will expect students to utilise this prior knowledge and content given in lectures and in the problem-based learning assessments. This module requires application of understanding and problem solving skills.
View full module detailsPharmacokinetics and Toxicology is the science of safety: It is the study of how exogenous chemicals enter and are disposed of by the body, and the effects that they can have on the organ systems of the body. Toxicology is designed to minimise the risk of harm to humans from exposure to any of the thousands of chemicals that we use every day. In this module, we will look at the basic mechanisms of how chemicals may cause harm to living organisms, and some of the testing procedures in place to detect such adverse effects. We will examine the mathematical patterns of drug administration and excretion and learn to explain these and determine their meaning, these concepts will be brought together through a series of case study workshops where mathematical data will be handled and examined.
View full module detailsThe Biological Rhythms module is designed to provide students with a comprehensive, research-led overview of current topics in Biological Rhythms, with an emphasis on mammalian Chronobiology. The module builds on critical evaluation skills developed in previous modules, including appraisal and interpretation of scientific literature and evaluating current gaps in our knowledge. The module is delivered as a mix of lectures, online content, and several tutorials in which knowledge is integrated and evaluated. The summative assessment of this module consists of two pieces of course work, in which students apply skills in digital literature searches, resourcefulness in evaluating literature and interpreting current knowledge to develop forward-looking views that apply and validate research insights in real world conditions.
View full module detailsSemester 1 & 2
Core
The final year research project develops practical, analytical, literature sourcing and presentation skills that have been acquired during the typical undergraduate degree programme. The projects provided as part of this module reflect topics and modes of research that are undertaken in the School of Biosciences based of the expertise of our academic staff and hence cover a wide variety of the United Nation’s Sustainability Development Goals around health, the environment and hunger. Modes of research include laboratory-based; in silico; computational; fieldwork, data-analysis, and grant proposals. Research project allocations are usually made based on students’ indication of their preferred projects from a catalogue provided at the start of the academic year. Students should liaise regularly with their supervisor(s) throughout the academic year as they progress with the research, building their independence as a researcher by searching for information, planning experiments/analysis approaches or formulating grant proposals, analysing data, drawing up conclusions and developing oral and written communication skills: all of which will help them develop employability competencies and skills. Students are expected undertake a critical review of the literature of their topic through literature searches and the use of bibliographic databases, which will help them to develop resourcefulness. Students will build up resilience by directly investigating a scientific question/hypothesis that may include designing their own approach or experimental plan (with support from the supervisor(s)) to investigate the question/hypothesis. The use of statistical software and other digital platforms/specialist analytical software for literature searching/meta-analysis etc will help students increase their digital capability. During any practical or skills development sessions, students will learn how to work in a laboratory, the value of resources, how to work in a laboratory environment and best practice to be sustainable, all of which will help them develop responsibility and global and cultural capabilities The final sign-off for passing the Practical Skills Record is also incorporated into this module.
View full module detailsOptional modules for Year 3 (with PTY) - FHEQ Level 6
Students must choose one optional module per semester.
Year 3 - MSci (Hons) with placement
Semester 1 & 2
Core
This module supports students’ development of personal and professional attitudes and abilities appropriate to a Professional Training placement. It supports and facilitates self-reflection and transfer of learning from their Professional Training placement experiences to their final year of study and their future employment. The PTY module is concerned with Personal and Professional Development towards holistic academic and non-academic learning, and is a process that involves self-reflection, documented via the creation of a personal record, planning and monitoring progress towards the achievement of personal objectives. Development and learning may occur before and during the placement, and this is reflected in the assessment model as a progressive process. However, the graded assessment takes place primarily towards the end of the placement. Additionally, the module aims to enable students to evidence and evaluate their placement experiences and transfer that learning to other situations through written and presentation skills.
View full module detailsYear 4 - MSci (Hons) with placement
Semester 1
Compulsory
In this module, students will work in teams and individually to evaluate and propose approaches to authentic, real-world, scenarios in biomedical research. The students will work with the academic facilitator to understand the basis of the research problem. The students will propose a critical experimental plan, incorporating a range of appropriate biochemical techniques. It is expected that the work will include details of cell lines or experimental models used, how experiments will be controlled, replicated, and evaluated, and which statistical models would be appropriate for the methods under discussion. We will keep a critical and evaluative research record of both team and individual efforts and students will have consolidation weeks to reflect on their experimental proposals and critically improve their work with our feedback. This module will require integration of knowledge you developed in the first 3 years of your program. In general, the module will help build valuable skills towards the Research Dissertation or Advanced Research Project Modules in this final year, as well as help you navigate challenges and scientific problems in your future workplace.
View full module detailsThis module is designed to cover the pathogenesis aspects of a broad range of diseases that affect cells; tissues, and organs. Emphasis is placed on pathological conditions (both cancer and non-cancer disease) which are prevalent in various societies and cultures, and different genders, how these diseases emerge at molecular levels and what type of anomalies they cause together with the clinical challenge to detect and treat them. You will familiarise themselves with various clinical and laboratory diagnostic techniques, together with research that aims to improve your understanding of these diseases at the cellular and molecular level and their diagnoses. This will be vital in developing critical thinking about disease aetiology, their progression and how they can be targeted through novel therapies. A range of transferrable and professional skills are included in the module, including pathological evaluation, and the use of reference ranges in identifying abnormal results. Expert lecturers (both clinically trained and basic scientists) will cover detailed case studies of different diseases, with assessments designed to encourage independent further study of diseases not covered in the main lecture Programme. This blend of lectures from expert clinicians/non-clinicians supplemented by highly focused tutorials will ensure that you not only develop an advanced understanding of the molecular mechanisms underlying the emergence of diseases but are able to assess, appraise, criticize, and formulate hypotheses on how to develop next generation of highly effective precision medicine-based treatment approaches for disease diagnosis and treatment. This module complements other modules at level 7, namely Molecular Medicine and Infectious diseases and provides an excellent synergy in developing critical thinking on disease diagnosis, prognosis and therapeutics.
View full module detailsSemester 2
Compulsory
The ability to appraise scientific literature and to communicate ideas is an academic and professional skill required across many areas of the biosciences. Journal clubs are convened in research and clinical environments and are used by professionals to continue to update knowledge of their disciplines and to maintain competencies as scientists; educators, and clinicians. The ability to distil and critique literature into a short review is also an important skill for the ongoing development of professionals in this area. By Level 7, students will already have a sound understanding of the importance of valid scientific information, and the role of the peer-review process in assuring rigour and integrity. This module develops skills in critical appraisal of scientific literature through a journal club whereby recent publications across a representative range of biomedical science disciplines are discussed in regular sessions facilitated by research students; post-doctoral, and academic staff. A literature review of an appropriate biomedical topic will further develop approaches to using online databases and selecting appropriate publications, together with writing skills. The progress of this piece of work is supported by one-to-one tutorials.
View full module detailsThis is an introductory course on bioinformatics and data science aimed at medical and life sciences undergraduate and postgraduade students that did not have previous exposure to quantitative methodologies. There are no pre-requisites in terms of advanced algebra, calculus, probability theory, statistics or computer programming. Computer programming (coding) and data science are salient skills needed for securing academic and industry jobs. Worldwide, the bioinformatics job market has experienced robust growth over the last decade. In the UK, there is chronic deficit of bioinformaticians as documented by the government's "Full review of the Shortage Occupation List" Bioinformatics and Data Science underlies many academic disciplines and score highly among the most useful skills you will learn in your degree. In the Life and Health Sciences, Bioinformatics and Data Science is essential for epidemiologists, geneticists, biologists, and biomedical scientists to convert research questions into testable statistical models, and to produce interpretable, reproducible, and valid results. This module introduces both facets of study design and data analysis with the aim of enabling graduate students to independently make scientific investigations in a coherent and reproducible way, and to apply notions of causality, statistical inference, and artificial intelligence. It also provides practical hands-on experience conducting computational genomics and gene expression analyses, two bioinformatics skills in high demand worldwide
View full module detailsSemester 1 & 2
Core
This module provides in-depth training in laboratory investigation and the associated skills that are at the heart of Level 7 studies: the aim of the program is to allow students to “develop critical and analytical skills such that they can identify problems, formulate hypotheses, design experiments, acquire and interpret data and draw conclusions.” These are implicit in the successful completion of a research project. Students are involved in the projects from their inception and may also continue with their Level 6 dissertation project provided that there is scope to create new hypotheses and avoid overlap with previous work – work to be assessed in this module must be completely distinct from any work assessed as part of Level 6 modules. During the extended research project students perform much of the work independently (although under academic supervision for guidance and support). The project will normally be laboratory based – alternatives include data analysis projects; bioinformatics, and in silico projects. They must contain a substantial proportion of original work and generate original data sets. Surveys, repetition of other work, or evaluation of test kits or other established procedures are not, in themselves, sufficient, although they may form the starting point for an acceptable project. The Advanced Research Project is designed to build upon undergraduate experience and to further develop research skills that enhance student employability within the Biomedical Sciences. Students will develop independent experimental design and critical data analysis skills and learn to present their results in both written and verbal formats. Students will acquire data analysis skills that will enhance their digital capabilities. They will gain experience of modern statistical analysis software and up-to-date digital bioinformatics tools. Projects could also include the development and application of coding such as R and Python for data analysis. Projects provided by academic research-active staff will reflect current state-of-the-art research being performed within the School, which is aligned with current global and cultural challenges in providing sustained lifelong health. Overall, the module is designed to provide our Biomedical Science MSci graduates with the scientific and research resourcefulness and resilience that will equip them with the necessary skills and experience for successful careers in Biomedical Science.
View full module detailsTeaching and learning
- Group work
- Independent study
- Laboratory work
- Lectures
- Online learning
- Practical sessions
- Role play
- Seminars
- Tutorials
Assessment
We use a variety of methods to assess you, including:
- Coursework
- Essays
- Examinations
- Practical write-ups
- Presentations.
For a full breakdown of modular assessments, please see the module table (above).
General course information
Contact hours
You will spend a significant part of your first year in laboratory-based practicals. This will be around a quarter throughout your second year.
Contact hours can vary across our modules. Full details of the contact hours for each module are available from the University of Surrey's module catalogue. See the modules section for more information.
Timetable
New students will receive their personalised timetable in Welcome Week. In later semesters, two weeks before the start of semester.
Scheduled teaching can take place on any day of the week (Monday – Friday), with part-time classes normally scheduled on one or two days. Wednesday afternoons tend to be for sports and cultural activities.
View our code of practice for the scheduling of teaching and assessment (PDF) for more information.
Location
Stag Hill is the University's main campus and where the majority of our courses are taught.
We offer careers information, advice and guidance to all students whilst studying with us, which is extended to our alumni for three years after leaving the University.
This course is accredited by the Institute of Biomedical Science (IBMS), which means that on successful completion of your studies, you’ll have the academic requirements needed to register with the Health and Care Professions Council (HCPC), to work as a biomedical scientist in the NHS.
93 per cent of our biosciences and medicine students go on to employment or further study (Graduate Outcomes 2024, HESA). With a Biomedical Science degree you could take a role such as:
- Biomedical scientist
- Clinical research associate
- Clinical trial coordinator
- Data scientist
- Drug safety specialist
- Laboratory analyst.
Our alumni can be found in hospital, academic and industrial research laboratories around the world, with recent graduates working for:
- AstraZeneca
- Cancer Research UK
- Great Ormond Street Hospital
- Queen Mary University of London
- The Royal Marsden NHS Foundation Trust
- University of Oxford.
With the critical thinking, analysis, problem-solving, decision-making and communication skills learnt throughout the course, several graduates have sought alternative careers in management, publishing and teaching. Many students also use this course to apply for further study including postgraduate research, and graduate dentistry and medicine programmes.
You’ll benefit from hands-on learning in our £12.5 million Innovation for Health Learning Laboratory, where you will conduct experiments and follow scientific protocols.
The Laboratory is fitted with the latest industry equipment which you’ll use to conduct a full range of experiments. You’ll complete your first practical within your first two weeks.
The time you spend in our facilities will give you the opportunity to familiarise yourself with biomedical science methodology and develop the practical laboratory experience that’s essential in a research career and valued by a wide range of employers.
In your final year, depending on your research project, you may also get to our dissertation laboratory.
Fien van der Graaf
Graduate - Biomedical Science BSc (Hons)
"I had a fantastic time during my placement at AstraZeneca. I developed invaluable professional and scientific skills, and it inspired me to pursue a career in biopharmaceutical research and development."
Connor Browse
Graduate - Biomedical Science BSc (Hons)
"Studying biomedical science at Surrey was, in a word, fantastic. And I would strongly advise doing a placement year to anyone; it’s invaluable for employability and life experience."
Learn more about the qualifications we typically accept to study this course at Surrey.
Typical offer
- BSc (Hons):
- ABB-BBB
- Required subjects: Biology or Chemistry and a second science or mathematics subject.
- MSci (Hons):
- AAB
- Required subjects: Biology or Chemistry and a second science or mathematics subject.
- BSc (Hons) with foundation year:
- CCC
- Required subjects: a science subject.
A-level General Studies and A-level Critical Thinking are not accepted. Applicants taking the Science Practical Endorsement are expected to pass.
GCSE or equivalent: English Language and Mathematics at grade 4 (C).
- BSc (Hons):
- DDD-DDM in Applied Science.
- MSci (Hons):
- DDD in Applied Science.
- BSc (Hons) with foundation year:
- MMM in Applied Science.
Please contact the Admissions team if you are taking other BTECs in a similar subject area.
GCSE or equivalent: English language and mathematics at grade 4 (C).
- BSc (Hons):
- 33-32
- Required subjects: Biology or Chemistry HL5/SL6 and a second science or mathematics subject HL5/SL6.
- MSci (Hons):
- 34
- Required subjects: Biology or Chemistry HL5/SL6 and a second science or mathematics subject HL5/SL6.
- BSc (Hons) with foundation year:
- 29
- Required subjects: a science subject HL4/SL6.
GCSE or equivalent: English A HL4/SL4 or English B HL5/SL6 and Mathematics (either course) HL4/SL4.
- BSc (Hons):
- 78-75%
- Required subjects: Biology or Chemistry 7.5 and a second science subject or Mathematics (5 period) 7.5.
- MSci (Hons):
- 82%
- Required subjects: Biology or Chemistry 7.5 and a second science subject or Mathematics (5 period) 7.5.
- BSc (Hons) with foundation year:
- For foundation year equivalencies please contact the Admissions team.
GCSE or equivalent: English Language (1/2) 6 or English Language 3 (7) and Mathematics 6.
- BSc (Hons):
- QAA-recognised Access to Higher Education Diploma with 45 Level 3 credits overall including 30 at Distinction and 15 at Merit - 27 at Distinction and 18 at Merit.
- Required subjects: 15 credits in Biology or Chemistry and 15 credits in another science subject.
- MSci (Hons):
- QAA-recognised Access to Higher Education Diploma with 45 Level 3 credits overall including 39 at Distinction and 6 at Merit.
- Required subjects: 15 credits in Biology or Chemistry and 15 credits in another science subject.
- BSc (Hons) with foundation year:
- QAA-recognised Access to Higher Education Diploma with 45 Level 3 credits overall including 21 at Distinction, 3 at Merit and 21 at Pass.
- Required subjects: modules must be in relevant subjects.
GCSE or equivalent: English Language and Mathematics at grade 4 (C).
- BSc (Hons):
- AABBB-ABBBB
- Required subjects: Biology or Chemistry and another science or mathematics subject.
- MSci (Hons):
- AAABB
- Required subjects: Biology or Chemistry and another science or mathematics subject.
- BSc (Hons) with foundation year:
- BBBCC
- Required subjects: a science subject.
GCSE or equivalent: English Language and Mathematics at grade C (Scottish National 5).
- BSc (Hons):
- Pass overall with ABB-BBB from a combination of the Advanced Skills Challenge Certificate and two A-levels.
- Required subjects: A-level Biology or Chemistry and an A-level in another science or mathematics subject.
- MSci (Hons):
- Pass overall AAB from a combination of the Advanced Skills Challenge Certificate and two A-levels.
- Required subjects: A-level Biology or Chemistry and an A-level in another science or mathematics subject.
- BSc (Hons) with foundation year:
- Pass overall with CCC from a combination of the Advanced Skills Challenge Certificate and two A-levels.
- Required subjects: an A-level in a science subject.
A-level General Studies and A-level Critical Thinking are not accepted. Applicants taking the Science Practical Endorsement are expected to pass.
GCSE or equivalent: English Language and Mathematics at grade 4 (C).
- BSc (Hons):
- Distinction
- Required subjects: Science.
- MSci (Hons):
- N/A
- BSc (Hons) with foundation year:
- Pass
- Required subjects: Science.
GCSE or equivalent: English Language and Mathematics at grade 4 (C).
Applicants taking the Extended Project Qualification (EPQ) will receive our standard A-level offer for this programme, plus an alternate offer of one A-level grade lower, subject to achieving an A grade in the EPQ. The one grade reduction will not apply to any required subjects.
Applicants can only receive one grade reduction from the published grades, an EPQ grade reduction can’t be applied in addition to other grade reductions made through other schemes such as Contextual Admissions or In2Surrey.
English language requirements
IELTS Academic: 6.5 overall with 6.0 in writing and 5.5 in each other element.
View the other English language qualifications that we accept.
If you do not currently meet the level required for your programme, we offer intensive pre-sessional English language courses, designed to take you to the level of English ability and skill required for your studies here.
International Foundation Year
If you are an international student and you don’t meet the entry requirements for this degree, we offer the International Foundation Year at the Surrey International Study Centre. Upon successful completion, you can progress to this degree course.
Selection process
We normally make offers in terms of grades.
If you are a suitable candidate you may be invited to an offer holder event. During your visit to the University you can find out more about the course and meet staff and students.
Recognition of prior learning
We recognise that many students enter their higher education course with valuable knowledge and skills developed through a range of professional, vocational and community contexts.
If this applies to you, the recognition of prior learning (RPL) process may allow you to join a course without the formal entry requirements or enter your course at a point appropriate to your previous learning and experience.
There are restrictions on RPL for some courses and fees may be payable for certain claims. Please see the code of practice for recognition of prior learning and prior credit: taught programmes (PDF) for further information.
Contextual offers
Did you know eligible students receive support through their application to Surrey, which could include a grade reduction on offer?
Fees
Explore UKCISA’s website for more information if you are unsure whether you are a UK or overseas student. View the list of fees for all undergraduate courses.
Payment schedule
- Students with Tuition Fee Loan: the Student Loans Company pay fees in line with their schedule.
- Students without a Tuition Fee Loan: pay their fees either in full at the beginning of the programme or in two instalments as follows:
- 50% payable 10 days after the invoice date (expected to be early October of each academic year)
- 50% in January of the same academic year.
The exact date(s) will be on invoices. Students on part-time programmes where fees are paid on a modular basis, cannot pay fees by instalment.
- Sponsored students: must provide us with valid sponsorship information that covers the period of study.
Professional training placement fees
If you are studying on a programme which contains a Professional Training placement year there will be a reduced fee for the academic year in which you undertake your placement. This is normally confirmed 12 to 18 months in advance, or once Government policy is determined.
Additional costs
Safety equipment and/or uniform: £24 – equipment pack (includes laboratory coat, laboratory glasses, laboratory books, pen and bag). You are responsible for the costs associated with maintaining/washing/replacing any equipment.
Our award-winning Professional Training placement scheme gives you the chance to spend a year in industry, either in the UK or abroad.
We have thousands of placement providers to choose from, most of which offer pay. So, become one of our many students who have had their lives and career choices transformed.
Biomedical science placements
You can choose to work for a range of employers, including pharmaceutical companies, hospitals, and academic institutions, to practise and enhance your skills.
We work with industry leaders to offer accredited placements exclusively to Surrey students looking to become biomedical scientists after graduating. These can be used as evidence in your portfolio when registering with the Health and Care Professions Council (HCPC).
Previous students have gained placements with:
- AstraZeneca UK
- GlaxoSmithKline
- Public Health England
- Sanofi.
We also have an extensive number of partner institutions that offer placements exclusively to Surrey students, giving you access to research laboratories across the world. Our partner institutions include:
- Agency for Science, Technology and Research, Singapore
- Alliance for Research and Conservation in the Amazon (ARCAmazon), Puerto Maldonado, Peru
- Harvard Medical School, Harvard University, Boston, USA
- The Chinese University of Hong Kong, Hong Kong
- Okayama University, Japan
- University of Sydney, Australia.
You can also develop your transferrable skills by working in other fields, such as scientific communications, marketing and data analysis.
Applying for placements
Students are generally not placed by the University. But we offer support and guidance throughout the process, with access to a vacancy site of placement opportunities.
Find out more about the application process.
Study and work abroad
Studying at Surrey opens a world of opportunity. Take advantage of our study and work abroad partnerships, explore the world, and expand your skills for the graduate job market.
The opportunities abroad vary depending on the course, but options include study exchanges, work/research placements, summer programmes, and recent graduate internships. Financial support is available through various grants and bursaries, as well as Student Finance.
Perhaps you would like to volunteer in India or learn about Brazilian business and culture in São Paulo during your summer holidays? With 140+ opportunities in 36+ different countries worldwide, there is something for everyone. Explore your options via our search tool and find out more about our current partner universities and organisations.
Apply for your chosen course online through UCAS, with the following course and institution codes.
About the University of Surrey
Need more information?
Contact our Admissions team or talk to a current University of Surrey student online.
- BSc (Hons)View UCD10F0001U
- BSc (Hons) with foundation yearView UCD10F0009U
- BSc (Hons) with placementView UCD10S0001U
- BSc (Hons) with foundation year and placementView UCD10S0009U
- MSci (Hons)View UCD31F0001U
- MSci (Hons) with placementView UCD31S0001U
Terms and conditions
When you accept an offer to study at the University of Surrey, you are agreeing to follow our policies and procedures, student regulations, and terms and conditions.
We provide these terms and conditions in two stages:
- First when we make an offer.
- Second when students accept their offer and register to study with us (registration terms and conditions will vary depending on your course and academic year).
View our generic registration terms and conditions (PDF) for the 2023/24 academic year, as a guide on what to expect.
Disclaimer
This online prospectus has been published in advance of the academic year to which it applies.
Whilst we have done everything possible to ensure this information is accurate, some changes may happen between publishing and the start of the course.
It is important to check this website for any updates before you apply for a course with us. Read our full disclaimer.