
Informational steady state and entropy 
production in  continuously monitored systems

Mauro Paternostro 

University of Surrey, 8 July 2024

School of Mathematics & Physics, Queen’s University Belfast 

Dipartimento di Fisica e Chimica E Segrè, Università degli Studi di Palermo



STRUCTURE OF THE TALK

3 Observing irreversible  
entropy in measured mesoscopic  

quantum settings

1 Formalism for entropy production  
in continuously measured 

quantum systems

2Informational steady states: 
gaining & losing through measurement



Why entropy production?

Non-equilibrium processes 
dissipate energy. This produces  
irreversible increase of entropy

Entropy production for estimating the 
performance of devices (exergy is reduced by 

irreversibility)
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Fantastic framework for pinpointing 
the quantum-to-classical transition



Entropy production
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Entropy production

⇒ Σ = ΔS − ∫
δQ
T

Clausius: “Uncompensated transformation”

Second Law: ΔS ≥ ∫
δQ
T

Which is the role of quantum fluctuations on entropy production?

dS
dt

= Π(t) + Φ(t)

Entropy  
production rate

Entropy  
flux rate

What happens if you plug in the effects of measuring?
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FIG. 1. Principal features of our scheme: (a) a quantum
system is initialised in a given state, and then it is led to
interact with an external thermal bath. When its dynamics is
not monitored, it dissipates an amount of entropy ⇧uc; (b) the
implementation of continuous measurements on the system
dramatically change the way it dissipates entropy, resulting
in a balancing with the amount of information extracted with
the measurement process (I).

is not experimentally accessible. Finally, strategy (i) is
not applicable as we do not have access to the backward
trajectory. Thus, it appears clear that it is of paramount
importance to be able to properly account for the entropy
production and irreversibility in continuously monitored
systems in such a way to encompass more general situa-
tions encountered in realistic experiments.

Here, we lay down such a widely applicable formalism
for continuously monitored Gaussian systems, and nail
down its consequences by way of both general arguments
and specific case study. This is certainly ok for PRA
but it is not required for PRL. The work is organized
as follow: i) we set up the formalism for the dynam-
ics of continuously monitored Gaussian systems; ii) we
introduce the entropic measure that is suitable for the
analysis, i.e. the Wigner entropy [], and the space-phase
formalism apt to obtain it. This allows us to demon-
strate how the entropy rate can be split in entropy flux
and production rate in an natural way; iii) we discuss
the form of the entropy production rate term, connect
our findings with the information-thermodynamics link,
and present a second law-like relation for continuously
measured Gaussian systems; iv) finally, we substantiate
our results presenting two examples, a thermal quench of
an harmonic oscillator and the optical parametric oscil-

lator.
Continuously measured Gaussian systems. (The dy-

namics of a continuously measured open quantum system
subjected to a Markovian evolution can be described by
a Stochastic Master Equation [])
The dynamics of an open quantum system continu-

ously measured, and undergoing a Markovian evolution,
is described by a stochastic master equation (SME) []
AB: THIS CAN ALSO BE COMMENTED AWAY

d⇢ = �i[Ĥ, ⇢]dt+
X

k

D[ĉk](⇢)dt+
X

k

p
⌘kH[ĉk](⇢)dwk,

(1)
where dwi are infinitesimal Wiener increments, {ĉk} is a
set of arbitrary operators, D[ĉ]⇢ = ĉ⇢ĉ

†
�{ĉ

†
ĉ, ⇢}/2 is the

usual Lindblad dissipator, and H[ĉ]⇢ = ĉ⇢+⇢ĉ
†
�hĉ+ĉ

†
i⇢

is the superoperator describing the measurement(s) with
e�ciency ⌘ []. This equation describes the evolution of
the quantum state of the system conditioned on the out-
comes of the continuous measurement. Upon averaging
over all possible stochastic trajectories, weighted by the
outcomes probabilities, the stochastic part vanishes leav-
ing the deterministic Lindblad master equation for the
open system dynamics, (whose dynamics will be called
unconditional throughout the paper.) — in the following
we refer to this as describing the unconditional dynam-
ics. While elegantly formulated, solving the SME is in
general a tall order. (The intricacy of such an approach
is greatly simplified when dealing with Gaussian systems,
since their description can be reduced to the knowledge
of the first two statistical momenta of the quadratures
of the system.) Luckily, for Gaussian systems the first
two statistical momenta of the quadratures of the sys-
tem completely characterized its state. The problem of
solving the SME can then be superseded in favor of a
much simpler system of stochastic equations. AB: what
is a weak measurement, how general the formalism....do
we want to go into this stu↵??
Let us consider a system of n modes, each de-

scribed by a couple (q̂i, p̂i) of quadrature operators with
[q̂j , p̂j ] = i, and define a vector of operators x̂ =
(q̂1, p̂1, q̂2, p̂2, . . . , q̂n, p̂n). (When restricting to Gaussian
systems, the Hamiltonian appears at most quadratic in
the quadrature operators, and can be modeled accord-
ing to this very general form) Since we are interested in
Gaussian systems, the Hamiltonian of the system can be
at most quadratic in the quadrature operators, thus it
has the general form

Ĥ =
1

2
x̂T

Hsx̂+ bT⌦x̂, (2)

where Hs is a c-numbers 2n ⇥ 2n matrix, b is a linear
driving term 1 2n�vector (possibly time dependent), and

1
It is interesting to note that, a linear driving term in the Hamilto-

Don’t look yet!!!

A Belenchia, L Mancino, G T Landi, and M Paternostro,  
Nature Quantum Information 6, 97 (2019)
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1
It is interesting to note that, a linear driving term in the Hamilto-
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⌘kH[ĉk](⇢)dwk,

(1)
where dwi are infinitesimal Wiener increments, {ĉk} is a
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†
�{ĉ
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It is interesting to note that, a linear driving term in the Hamilto-

ℐ

A Belenchia, L Mancino, G T Landi, and M Paternostro,  
Nature Quantum Information 6, 97 (2019)



Let’s fix the ideas

measurement
pump signal

input noise

dissipation & 
decoherence

Now restrict the framework to quadratic evolution 
and Gaussian states & measurements

A Belenchia, et al.,  Nature Quantum Information 6, 97 (2019)
A Belenchia, M Paternostro, and G T Landi,  PRX Quantum 3, 010303 (2022) 



Stochastic terms

General formalism

Deterministic dynamics

Stochastic master equation

dρ = − i[Ĥ, ρ]dt + ∑
k

𝒟[ ̂ck](ρ)dt + ∑
k

ηkℋ[ ̂ck](ρ)dwk

ℋ[ ̂c]ρ = ̂cρ + ρ ̂c† − ⟨ ̂c + ̂c†⟩ρ

M. G. Genoni, L. Lami, and A. Serafini, Contemp. Phys. 57, 331 (2016) 
A Belenchia, M Paternostro, and G T Landi,  PRX Quantum 3, 010303 (2022) 



·σ = Aσ + σAT + D

Un-Conditioned Gaussian 
dynamics

dx = (Ax + b) dt

A Belenchia, et al.,  Nature Quantum Information 6, 97 (2019)
A Belenchia, M Paternostro, and G T Landi,  PRX Quantum 3, 010303 (2022) 



General-dyne 
measurement

= Aσ + σAT + D − χ(σ)
contains terms depending on

the measurement  

⇒

·σ = Ãσ + σÃT + D̃ − σBBTσ

Conditioned Gaussian 
dynamics

·σ = Aσ + σAT + D

dx = (Ax + b) dt

3

⌦ is the symplectic 2n⇥ 2n matrix defined as

⌦ =
nM

k=1

✓
0 1
�1 0

◆
.

(The SME preserves the Gaussianity of the system
whether the environment is modelled by Lindblad gen-
erators linear in the quadratures of the system, and the
latter is monitored through Gaussian measurements: the
first momenta x̄ = hx̂i and the Covariance Matrix (CM)
�ij = h{x̂i, x̂j}i/2 � hx̂iihx̂ji are su�cient for the com-
plete description of the system. In such a scenario, the
dynamical equations describing their evolutions are) If
the system is prepared initially in a Gaussian state, the
environment is modelled by Lindblad generators at most
linear in the quadratures of the system, and it is mon-
itored via Gaussian measurements, the SME preserves
the Gaussianity and the state is characterized by the
first momenta x̄ = hx̂i and the covariance matrix (CM)
�ij = h{x̂i, x̂j}i/2 � hx̂iihx̂ji. The dynamical equations
for first and second momenta are given by []

�̇ = A� + �A
T +D � �(�) (3)

dx̄ = (Ax̄+ b)dt+ (�CT + �T )dw, (4)

where dw is an 2`�vector of Wiener increments (` is
the number of output degrees of freedom being moni-
tored), A(D) is the drift (di↵usion) matrix characteriz-
ing the unconditional open dynamics of the system, and
�(�) = (�CT + �T )(C�+ �) is a positive (semi-)definite
matrix defined in terms of the 2`⇥ 2n matrices C and �
describing the measurement. While we do not go into the
specific of how these matrices are obtained (see, e.g., []),
we want to highlight the fact that the di↵usion matrix
A can be decomposed as A = ⌦Hs + Airr, where the
first term accounts for the unitary evolution and the sec-
ond one for the di↵usive one. It is also interesting to
note that, the equation for the covariance matrix is de-
terministic. Thus, �(t) does not depend on the explicit
outcomes of the measurement (i.e., the trajectory), while
it depends on the specific measurement carried out [].

Wigner entropy and phase-space dynamics.— A conve-
nient representation of the dynamics of an open Gaussian
system — being it subject or not to continuous measure-
ment — is given in the quadratures phase-space via the
Wigner function []. The Wigner function of the contin-
uously monitored n-mode Gaussian system described by
eqs. (??) is a Gaussian

W (x, t; x̄(t),�(t)) =
1

(2⇡)n
p
det�

e
� 1

2 (x�x̄)T��1(x�x̄)
,

(5)

nian of the system can account for non-vanishing first momenta

of the environment initial state [1] —relevant, e.g., if coherent

baths are taken into account [2] —, and for linear feedback con-

trol [].

where x 2 R2n represents a point in phase-space. In
the following, when considering the unconditioned dy-
namics we use µ for the first momenta and �uc, Wuc for
the covariance matrix and Wigner function respectively.
Furthermore, note that for the unconditional dynamics
eqs. (3), (4) just lose the terms proportional to the mea-
surement matrices C, �.
The dynamics in phase-space of the Wigner function

is dictated, in the case of unconditional evolution, by a
Fokker–Planck equation which can be derived directly
from the Lindblad master equation 2 and takes the form
of a continuity equation

@tWuc = �div[J], (6)

where the current J can be divided in a term encoding
the unitary dynamics and another one encoding the irre-
versible dissipative dynamics

Jrev = ⌦HsxWuc + bWuc (7)

Jirr = AirrxWuc �
1

2
DrWuc (8)

For the conditioned dynamics, the evolution of the
Wigner function is given in terms of a Kushner-like
stochastic equation which, again, assumes the form of
a continuity equation 3

dW = �div[Jdt + Jsto], (9)

where Jsto = W (�CT + �T )dw.
In order to proceed further, we need to characterize the

entropy of the Gaussian system. We do so adopting the
Wigner entropy as the entropic measure. The Wigner en-
tropy is defined as S = �

R
dxW logW . It corresponds,

for Gaussian systems, to the Renyi-2 entropy (up to a
constant) and thus tends to the von-Neumann entropy
in the classical limit []. The Wigner entropy was used by
two of the authors in [] as the apt tool for study the en-
tropy production rate for the unconditional dynamics of
Gaussian systems, going beyond the limitations of having
an equilibrium bath at non-vanishing temperature.
It is easy to see that, the Wigner entropy is a deter-

ministic function of time even for continuously measured
system since it does depends only on the determinant of
the CM which, as highlighted previously, undergoes a de-
terministic dynamics. The same then holds true for the
entropy rate which is given by

dS

dt
=

1

2
@t(Tr[log �]) =

1

2
Tr[2A + �

�1(D� �(�))]. (10)

2
In order to map the Lindblad equation to the Fokker–Planck one

see, e.g., [].
3
While it is possible, case by case, to obtain this stochastic equa-

tion using the usual rules for replacing quadrature operators in

Hilbert space with di↵erential operators in phase-space, a more

direct approach is via stochastic calculus applied to the Gaussian

Wigner function. We show this in the supplementary material

for the sake of completeness.

+μ(σ)dw

⇒
A Belenchia, et al.,  Nature Quantum Information 6, 97 (2019)

A Belenchia, M Paternostro, and G T Landi,  PRX Quantum 3, 010303 (2022) 



General-dyne 
measurement

Conditioned Gaussian 
dynamics

deterministic 
(only depends on CM)

stochastic 
(depend also on  

1st moments)

ϕ = 𝔼 [dΦx̄ /dt]
Π = 𝔼 [dΣx̄ /dt]

dS = dΦx̄ + dΣx̄

A Belenchia, et al.,  Nature Quantum Information 6, 97 (2019)
A Belenchia, M Paternostro, and G T Landi,  PRX Quantum 3, 010303 (2022) 



General-dyne 
measurement

Conditioned Gaussian 
dynamics

ϕ = 𝔼 [dΦx̄ /dt]
Π = 𝔼 [dΣx̄ /dt]

dS = dSuc + ·ℐdt

5

system to situations in which the latter is otherwise not
well-defined.

For the continuously measured case, a similar split-
ting in terms of entropy flux and production rates can be
carried out. However, while the entropy rate is determin-
istic due to the Gaussian nature of the system, the same
is not true for the entropy flux and production which de-
pend on the stochastic first momenta. It turns out that
the entropy rate can be written as dS = d�x̄dt+ d⌃x̄dt,
where d�x̄, d⌃x̄ are the entropy flux and production, re-
spectively, which depend on the trajectories of the condi-
tioned dynamics. Upon taking the average over the out-
comes of the measurement, we can rewrite the entropy
rate of the conditioned system in terms of the averages
of d�x̄ and d⌃x̄ as

dS

dt
= �+⇧, (14)

where � = E [d�x̄/dt] and ⇧ = E [d⌃x̄/dt] and E[·] stands
for the average over all possible stochastic values of x̄.

Note that, the entropy rate can be readily re-written
as

dS

dt
=

dSuc

dt
+ İ, (15)

where the informational quantity İ accounts for the ex-
cess entropy produced due to the measurement. It can
be obtained from eq. (10) as

İ =
1

2
Tr[��1D� �

�1
�(�)]�

1

2
Tr[��1

uc D], (16)

and it vanishes at the steady state by construction. By
comparing eq. (15) with eq. (14), and under the crucial
assumption that the stochastic entropy flux d�x̄ is lin-
ear in the conditioned state of the system — such that
E[d�x̄/dt] = �uc — we obtain

⇧ = ⇧uc + İ. (17)

This expression is the main result of this work. It con-
nects the entropy production rate of the un-monitored
open Gaussian system to the entropy production rate of
the monitored system via the informational quantity İ.
The second law for the un-monitored system, which reads
⇧uc � 0, can now be used to obtain a generalized second-
law for continuously measured Gaussian systems

⇧ � İ. (18)

The integrated version of the second law is given by
⌃ � I, where we identify ⌃ with the irreversible en-
tropy production. This is reminiscent of the result in [],
valid for discrete measurements AB: and thermal envi-
ronments?. The integrated information quantity I is,
by definition, the logarithm of the ratio between the pu-
rities (P) of the unconditional and conditional state of

the dynamics, I = log(Puc/Pc). It is important to note
that this quantity is always negative. Indeed, I can be
shown to correspond to minus the mutual information
between the stochastic variables X — representing the
point in phase-space — and X̄ — the stochastic variable
described by (??) —, i.e.,

I(t) = �I(X : X̄)  0. (19)

The inequality is saturated if and only if �(t) = �uc, i.e.,
if the CM of the conditioned dynamics is equal to the
one of the unconditioned dynamics (cf. supplementary
material).
Before discussing explicit examples, let us go back to

the crucial assumption on the linearity of the entropy
flux. This assumption can be justified, in general, by re-
ferring to the thermodynamic case in which the entropy
flux is none other than the heat flux Q/T from the sys-
tem. In that case, the heat flux rate is by definition linear
in the conditioned state since it is given by an expecta-
tion value over it. Another argument in support of such
an assumption can be found in [] where the entropy flux is
associated to the happening or not of quantum jumps of
the system. For the specific case of Gaussian dynamics,
this assumption can be verified adopting the phase-space
formalism discussed above — making it into a property of
the system more than an assumption. Indeed, the quan-
tity d�x̄ can be derived explicitly and shown to yield the
unconditional entropy flux rate on average 5. Neverthe-
less, we deem such an assumption relevant beyond the
case of Gaussian systems as the basis for obtaining the
entropy production rate unambiguously once an entropic
measure has been chosen.
Case study.— To conclude we consider two simple,

but physically relevant, examples — a thermal quench
and the optical parametric oscillator — which show sev-
eral features discussed above. In the first case, a single
harmonic oscillator, driven by a linear time-independent
driving term, is in contact with a single mode Markovian
bath in thermal equilibrium via a beam-splitter interac-
tion Hamiltonian. The bath is measured via a general-
dyne detection. In the second case, the iconic optical
parametric oscillator is again in contact with a one mode
thermal bath via the beam-splitter Hamiltonian (cf. sup-
plementary material).
In Fig. 2, the evolution of the entropy production rate,

entropy flux rate, and İ is shown for both the two systems
when subject to homodyne (in the x-quadrature) and
heterodyne detection. AB: DO WE WANT TO SAY
THIS? Note that İ assumes both positive and negative
values. While, for the two simple examples shown here,
we do not find any instances of ⇧ < 0, the regions of
positive İ already show how the generalized second-law

5
We do this construction explicitly in the supplementary material.

·ℐ

A Belenchia, et al.,  Nature Quantum Information 6, 97 (2019)
A Belenchia, M Paternostro, and G T Landi,  PRX Quantum 3, 010303 (2022) 



General-dyne 
measurement

Πc(t) = Πuc(t) + ·ℐ

Conditioned Gaussian 
dynamics

ϕ = 𝔼 [dΦx̄ /dt]
Π = 𝔼 [dΣx̄ /dt]

dS = dSuc + ·ℐdt

A Belenchia, et al.,  Nature Quantum Information 6, 97 (2019)
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General-dyne 
measurement

Πc(t) = Πuc(t) + ·ℐΠc(t) = Πuc(t) + ·ℐ

Conditioned Gaussian 
dynamics

Πuc(t) ≥ 0 second law for un-conditioned dynamics

A Belenchia, et al.,  Nature Quantum Information 6, 97 (2019)
A Belenchia, M Paternostro, and G T Landi,  PRX Quantum 3, 010303 (2022) 



General-dyne 
measurement
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FIG. 1. (a) A typical method for continuously monitoring a system is to couple it to an optical cavity and measure the photons leaking out.
(b) In a collisional model picture, the monitoring is introduced instead through a series of sequential collisions between the system X and
independent ancillae Yt, which are subjected to measurement after each collision. (c) Diagrammatic representation of the model. The system
is described stroboscopically (discrete time) by a state ⇢Xt . At each instant of time, it interacts with an independent ancilla, prepared in state
⇢Y , according to the map in Eq. (1). Afterwards, the ancillae are measured, as described by generalized measurement operators {Mz}, which
produce a classical (and random) outcome zt. (d) As time progresses, one builds up a measurement record ⇣t = (z1, . . . , zt), which contains all
the information acquired about X up to time t.

As the measurements are performed only on the ancillae, there
is never a direct backaction on the system, which is expressed
mathematically by

X

⇣t

P(⇣t)⇢Xt |⇣t = ⇢Xt (7)

for any choice of generalized measurements {Mz}. That is,
the average of ⇢Xt |⇣t over all outcomes ⇣t yields back the un-
conditional state ⇢Xt . Thus, while there may be a conditional
backaction, unconditionally the measurement is non-invasive.

The normalization factor P(⇣t) in Eq. (6) introduces a un-
wanted complication, as it forbids us to write ⇢Xt |⇣t as a map
acting on ⇢Xt�1 |⇣t�1 . This can be resolved, however, if we work
with unnormalized states. We define the completely positive,
trace non-preserving map

Ez(⇢X) = trY
n
MzU(⇢X ⌦ ⇢Y )U†M†z

o
, (8)

which is indexed by the possible outcomes z of the measure-
ments. Instead of working with ⇢Xt |⇣t in Eq. (6), we consider
the unnormalized states %Xt |⇣t , defined as the sequence gener-
ated by the map

%Xt |⇣t = Ezt

�
%Xt�1 |⇣t�1

�
(9)

with initial condition %X0 |⇣0 = ⇢X0 . One may readily verify that

trX %Xt |⇣t = trX
n
Ezt � . . . � Ez1 (⇢X0 )

o
= P(⇣t). (10)

The states %Xt |⇣t therefore contain the outcome distribution
P(⇣t) at any given time. And the normalized state in (6) is
recovered as ⇢Xt |⇣t = %Xt |⇣t/P(⇣t).

It is useful to keep in mind the interpretation of a CM2 as
a Hidden Markov model [9, 47, 48]. The system evolution
is Markovian, but this is hidden from the observer who is par-
tially ignorant about its dynamics: access to X is only possible
through the classical outcomes ⇣t. In the language of Bayesian
networks, the key issue entailed by our framework is thus
about the predictions that can be made on the state of the hid-
den layer X given the information available through the visible
layer of the outcomes ⇣t only. This highlights the nice inter-
play between quantum and classical features, present in these
models: The evolution of the system is quantum but infor-
mation is only accessed through classical data. We have also
found it illuminating to understand what would be the clas-
sical version of a CM2, as this allows us to relate our frame-
work directly with the classical formalism of Ito, Sagawa and
Ueda [9, 10]. This is addressed in Appendix A, where we also
discuss the conditions for a CM2 to be incoherent.

III. INFORMATION AND THERMODYNAMICS

A. Quantum-classical information

The information content in the unconditional state ⇢Xt can
be quantified by the von Neumann entropy S (Xt) ⌘ S (⇢Xt ) =
� tr ⇢Xt ln ⇢Xt . Similarly, the information in the conditional
state ⇢Xt |⇣t (properly normalized) is quantified by quantum-
classical conditional entropy

S (Xt |⇣t) =
X

⇣t

P(⇣t)S (⇢Xt |⇣t ). (11)
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terms of the stochastic master equation obeyed by the system;
that is, it does not require an explicit model of the environ-
ment, but only which type of open dynamics it produces.

There has been increasing evidence that a proper formu-
lation of thermodynamics in the quantum regime is only
possible if information on the environment and the system-
environment interactions are provided [28]. Reduced descrip-
tions, based only on master equations, can show apparent
violations of the 2nd law [29], something which can only
be resolved by introducing a specific model of the environ-
ment [30].

In this paper we put forth a very general framework for de-
scribing the thermodynamics of continuously monitored sys-
tems, where measurements are only done indirectly in the
bath. The formalism applies to a broad variety of systems and
process, and is particularly suited for describing ISSs. The
building block we use is to replace the continuous dynamics
by a stroboscopic evolution in small time-steps, described in
terms of a collisional model (CM) [31–40]. This has two main
advantages. First, the thermodynamics of CMs is by now very
well understood [30, 40–43] (see also [28] for a recent re-
view). And second, CMs naturally emerge in quantum optics,
from a discretization of the field operator into discrete time-
bins [44, 45]. The typical scenario is a system interacting with
an optical cavity, where a constant flow of photons is injected
by an external pump [cf. Fig. 1(a)]. At each time step, the
system will only interact with a certain time-window of the
input/output field, thus transforming the dynamics into that of
a series of sequential collisions between the system and some
ancilla. Due to this connection, collisional models serve as a
convenient tool for constructing the framework of continuous
measurements in experimentally relevant systems. We refer to
these as Continuously Monitored Collisional Models (CM2).

Our paper is organized as follows. Sec. II establishes the
basic framework, including the collisional setup. The corre-
sponding information flows and thermodynamic features are
characterized in Sec. III, which also contains the main contri-
bution of this work: namely the construction of a conditional
2nd law, which is capable of capturing the interplay between
thermodynamics and information. In Sec. IV, we apply the
CM2 framework to models involving qubits providing some
illustrative applications. Accompanying this manuscript, we
also make publicly available a self-contained numerical li-
brary in Mathematica, for carrying out stochastic simulations
of CM2s [46]. Finally, in Sec. V we draw our conclusions and
highlight the perspectives opened by our approach.

II. CONTINUOUSLY MEASURED COLLISIONAL
MODELS (CM2)

Here we develop the basic framework of CM2. We consider
a system X, with initial density matrix ⇢X0 , which is put to
interact sequentially with a series of independent and identi-
cally prepared (iid) ancillae, labelled Y1, Y2 etc., and prepared
always in the same state ⇢Yt = ⇢Y . Time is labeled in discrete
units of t = 0, 1, 2, 3, . . .. The collision taking the system from
t � 1 to t is described by a unitary Ut acting only between the

system X and ancilla Yt as (Fig. 1(b)):

⇢XtY 0t = Ut(⇢Xt�1 ⌦ ⇢Yt )U
†
t , (1)

where Y 0t refers to the state of ancilla Yt after the collision.
Taking the partial trace over the ancilla leads to the strobo-
scopic (Markovian) map

⇢Xt = E(⇢Xt�1 ) := trYt

n
⇢XtY 0t

o
. (2)

Notice that E does not need to carry an index t, since it is
the same for all collisions. After such map, the ancilla Y 0t
never participates again in the dynamics and, for the next step,
a fresh ancilla Yt+1 is introduced and the map in Eq. (2) is
repeated.

Information on the state of the system is acquired indirectly
by measuring the states ⇢0Yt

of each ancilla after they collided
with X. The measurement is described by a set of generalized
measurement operators {Mz}, satisfying

P
z M†z Mz = 11, so that

outcome zt occurs with probability

P(zt) = tr
n
Mzt⇢

0
Yt

M†zt

o
. (3)

By using generalized measurements, we encompass both pro-
jective, as well as weak measurements in the bath. A diagram-
matic depiction of the dynamics is shown in Fig. 1(c). A CM2

is completely described by specifying {⇢Y ,U,Mz}.
The distribution in Eq. (3) concerns only the marginal

statistics of a single outcome. Our interest will be instead on
the joint statistics of the set of measurement records

⇣t = (z1, . . . , zt). (4)

The indices are chosen so that ⇣t contains all information
about the system available up to time t. As ⇣ encompasses
the entire measurement record, it is associated with the “inte-
grated” information on X. Conversely, zt represents a di↵eren-
tial information gain associated only with the step Xt�1 ! Xt
(Fig. 1(d)). The joint distribution P(⇣t) is given by

P(⇣t) = trXY1...Yt

n
Mzt . . .Mz1⇢XY1...Yt M

†
z1
. . .M†zt

o
, (5)

where

⇢XY1...Yt =
⇣
⇧t

k=1Uk
⌘
0
BBBBBB@⇢X0

tO

j=1

⇢Y j

1
CCCCCCA
⇣
⇧t

k=1Uk
⌘†
.

Note that since the measurements act only on those ancil-
lae that no longer participate in the dynamics, it is irrelevant
whether the measurement Mzt occurs before the next evolution
with Yt+1 or not.

Finally, we also require the conditional state of the system
⇢Xt |⇣t , which quantifies the knowledge the experimenter has
about the system, given that the measurement record ⇣t was
observed. Such state is given by

⇢Xt |⇣t =
1

P(⇣t)
trY1...Yt

n ⇣
⇧t

k=1Mzk

⌘
⇢XY1...Yt

⇣
⇧t

k=1Mzk

⌘† o
. (6)
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terms of the stochastic master equation obeyed by the system;
that is, it does not require an explicit model of the environ-
ment, but only which type of open dynamics it produces.

There has been increasing evidence that a proper formu-
lation of thermodynamics in the quantum regime is only
possible if information on the environment and the system-
environment interactions are provided [28]. Reduced descrip-
tions, based only on master equations, can show apparent
violations of the 2nd law [29], something which can only
be resolved by introducing a specific model of the environ-
ment [30].

In this paper we put forth a very general framework for de-
scribing the thermodynamics of continuously monitored sys-
tems, where measurements are only done indirectly in the
bath. The formalism applies to a broad variety of systems and
process, and is particularly suited for describing ISSs. The
building block we use is to replace the continuous dynamics
by a stroboscopic evolution in small time-steps, described in
terms of a collisional model (CM) [31–40]. This has two main
advantages. First, the thermodynamics of CMs is by now very
well understood [30, 40–43] (see also [28] for a recent re-
view). And second, CMs naturally emerge in quantum optics,
from a discretization of the field operator into discrete time-
bins [44, 45]. The typical scenario is a system interacting with
an optical cavity, where a constant flow of photons is injected
by an external pump [cf. Fig. 1(a)]. At each time step, the
system will only interact with a certain time-window of the
input/output field, thus transforming the dynamics into that of
a series of sequential collisions between the system and some
ancilla. Due to this connection, collisional models serve as a
convenient tool for constructing the framework of continuous
measurements in experimentally relevant systems. We refer to
these as Continuously Monitored Collisional Models (CM2).

Our paper is organized as follows. Sec. II establishes the
basic framework, including the collisional setup. The corre-
sponding information flows and thermodynamic features are
characterized in Sec. III, which also contains the main contri-
bution of this work: namely the construction of a conditional
2nd law, which is capable of capturing the interplay between
thermodynamics and information. In Sec. IV, we apply the
CM2 framework to models involving qubits providing some
illustrative applications. Accompanying this manuscript, we
also make publicly available a self-contained numerical li-
brary in Mathematica, for carrying out stochastic simulations
of CM2s [46]. Finally, in Sec. V we draw our conclusions and
highlight the perspectives opened by our approach.

II. CONTINUOUSLY MEASURED COLLISIONAL
MODELS (CM2)

Here we develop the basic framework of CM2. We consider
a system X, with initial density matrix ⇢X0 , which is put to
interact sequentially with a series of independent and identi-
cally prepared (iid) ancillae, labelled Y1, Y2 etc., and prepared
always in the same state ⇢Yt = ⇢Y . Time is labeled in discrete
units of t = 0, 1, 2, 3, . . .. The collision taking the system from
t � 1 to t is described by a unitary Ut acting only between the

system X and ancilla Yt as (Fig. 1(b)):

⇢XtY 0t = Ut(⇢Xt�1 ⌦ ⇢Yt )U
†
t , (1)

where Y 0t refers to the state of ancilla Yt after the collision.
Taking the partial trace over the ancilla leads to the strobo-
scopic (Markovian) map

⇢Xt = E(⇢Xt�1 ) := trYt

n
⇢XtY 0t

o
. (2)

Notice that E does not need to carry an index t, since it is
the same for all collisions. After such map, the ancilla Y 0t
never participates again in the dynamics and, for the next step,
a fresh ancilla Yt+1 is introduced and the map in Eq. (2) is
repeated.

Information on the state of the system is acquired indirectly
by measuring the states ⇢0Yt

of each ancilla after they collided
with X. The measurement is described by a set of generalized
measurement operators {Mz}, satisfying

P
z M†z Mz = 11, so that

outcome zt occurs with probability

P(zt) = tr
n
Mzt⇢

0
Yt

M†zt

o
. (3)

By using generalized measurements, we encompass both pro-
jective, as well as weak measurements in the bath. A diagram-
matic depiction of the dynamics is shown in Fig. 1(c). A CM2

is completely described by specifying {⇢Y ,U,Mz}.
The distribution in Eq. (3) concerns only the marginal

statistics of a single outcome. Our interest will be instead on
the joint statistics of the set of measurement records

⇣t = (z1, . . . , zt). (4)

The indices are chosen so that ⇣t contains all information
about the system available up to time t. As ⇣ encompasses
the entire measurement record, it is associated with the “inte-
grated” information on X. Conversely, zt represents a di↵eren-
tial information gain associated only with the step Xt�1 ! Xt
(Fig. 1(d)). The joint distribution P(⇣t) is given by

P(⇣t) = trXY1...Yt

n
Mzt . . .Mz1⇢XY1...Yt M

†
z1
. . .M†zt

o
, (5)

where

⇢XY1...Yt =
⇣
⇧t

k=1Uk
⌘
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BBBBBB@⇢X0
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j=1

⇢Y j
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⇣
⇧t

k=1Uk
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.

Note that since the measurements act only on those ancil-
lae that no longer participate in the dynamics, it is irrelevant
whether the measurement Mzt occurs before the next evolution
with Yt+1 or not.

Finally, we also require the conditional state of the system
⇢Xt |⇣t , which quantifies the knowledge the experimenter has
about the system, given that the measurement record ⇣t was
observed. Such state is given by

⇢Xt |⇣t =
1

P(⇣t)
trY1...Yt

n ⇣
⇧t

k=1Mzk

⌘
⇢XY1...Yt

⇣
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terms of the stochastic master equation obeyed by the system;
that is, it does not require an explicit model of the environ-
ment, but only which type of open dynamics it produces.

There has been increasing evidence that a proper formu-
lation of thermodynamics in the quantum regime is only
possible if information on the environment and the system-
environment interactions are provided [28]. Reduced descrip-
tions, based only on master equations, can show apparent
violations of the 2nd law [29], something which can only
be resolved by introducing a specific model of the environ-
ment [30].

In this paper we put forth a very general framework for de-
scribing the thermodynamics of continuously monitored sys-
tems, where measurements are only done indirectly in the
bath. The formalism applies to a broad variety of systems and
process, and is particularly suited for describing ISSs. The
building block we use is to replace the continuous dynamics
by a stroboscopic evolution in small time-steps, described in
terms of a collisional model (CM) [31–40]. This has two main
advantages. First, the thermodynamics of CMs is by now very
well understood [30, 40–43] (see also [28] for a recent re-
view). And second, CMs naturally emerge in quantum optics,
from a discretization of the field operator into discrete time-
bins [44, 45]. The typical scenario is a system interacting with
an optical cavity, where a constant flow of photons is injected
by an external pump [cf. Fig. 1(a)]. At each time step, the
system will only interact with a certain time-window of the
input/output field, thus transforming the dynamics into that of
a series of sequential collisions between the system and some
ancilla. Due to this connection, collisional models serve as a
convenient tool for constructing the framework of continuous
measurements in experimentally relevant systems. We refer to
these as Continuously Monitored Collisional Models (CM2).

Our paper is organized as follows. Sec. II establishes the
basic framework, including the collisional setup. The corre-
sponding information flows and thermodynamic features are
characterized in Sec. III, which also contains the main contri-
bution of this work: namely the construction of a conditional
2nd law, which is capable of capturing the interplay between
thermodynamics and information. In Sec. IV, we apply the
CM2 framework to models involving qubits providing some
illustrative applications. Accompanying this manuscript, we
also make publicly available a self-contained numerical li-
brary in Mathematica, for carrying out stochastic simulations
of CM2s [46]. Finally, in Sec. V we draw our conclusions and
highlight the perspectives opened by our approach.

II. CONTINUOUSLY MEASURED COLLISIONAL
MODELS (CM2)

Here we develop the basic framework of CM2. We consider
a system X, with initial density matrix ⇢X0 , which is put to
interact sequentially with a series of independent and identi-
cally prepared (iid) ancillae, labelled Y1, Y2 etc., and prepared
always in the same state ⇢Yt = ⇢Y . Time is labeled in discrete
units of t = 0, 1, 2, 3, . . .. The collision taking the system from
t � 1 to t is described by a unitary Ut acting only between the

system X and ancilla Yt as (Fig. 1(b)):

⇢XtY 0t = Ut(⇢Xt�1 ⌦ ⇢Yt )U
†
t , (1)

where Y 0t refers to the state of ancilla Yt after the collision.
Taking the partial trace over the ancilla leads to the strobo-
scopic (Markovian) map

⇢Xt = E(⇢Xt�1 ) := trYt

n
⇢XtY 0t

o
. (2)

Notice that E does not need to carry an index t, since it is
the same for all collisions. After such map, the ancilla Y 0t
never participates again in the dynamics and, for the next step,
a fresh ancilla Yt+1 is introduced and the map in Eq. (2) is
repeated.

Information on the state of the system is acquired indirectly
by measuring the states ⇢0Yt

of each ancilla after they collided
with X. The measurement is described by a set of generalized
measurement operators {Mz}, satisfying

P
z M†z Mz = 11, so that

outcome zt occurs with probability

P(zt) = tr
n
Mzt⇢

0
Yt

M†zt

o
. (3)

By using generalized measurements, we encompass both pro-
jective, as well as weak measurements in the bath. A diagram-
matic depiction of the dynamics is shown in Fig. 1(c). A CM2

is completely described by specifying {⇢Y ,U,Mz}.
The distribution in Eq. (3) concerns only the marginal

statistics of a single outcome. Our interest will be instead on
the joint statistics of the set of measurement records

⇣t = (z1, . . . , zt). (4)

The indices are chosen so that ⇣t contains all information
about the system available up to time t. As ⇣ encompasses
the entire measurement record, it is associated with the “inte-
grated” information on X. Conversely, zt represents a di↵eren-
tial information gain associated only with the step Xt�1 ! Xt
(Fig. 1(d)). The joint distribution P(⇣t) is given by

P(⇣t) = trXY1...Yt
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where
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Note that since the measurements act only on those ancil-
lae that no longer participate in the dynamics, it is irrelevant
whether the measurement Mzt occurs before the next evolution
with Yt+1 or not.

Finally, we also require the conditional state of the system
⇢Xt |⇣t , which quantifies the knowledge the experimenter has
about the system, given that the measurement record ⇣t was
observed. Such state is given by

⇢Xt |⇣t =
1

P(⇣t)
trY1...Yt

n ⇣
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⌘
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FIG. 1. (a) A typical method for continuously monitoring a system is to couple it to an optical cavity and measure the photons leaking out.
(b) In a collisional model picture, the monitoring is introduced instead through a series of sequential collisions between the system X and
independent ancillae Yt, which are subjected to measurement after each collision. (c) Diagrammatic representation of the model. The system
is described stroboscopically (discrete time) by a state ⇢Xt . At each instant of time, it interacts with an independent ancilla, prepared in state
⇢Y , according to the map in Eq. (1). Afterwards, the ancillae are measured, as described by generalized measurement operators {Mz}, which
produce a classical (and random) outcome zt. (d) As time progresses, one builds up a measurement record ⇣t = (z1, . . . , zt), which contains all
the information acquired about X up to time t.

As the measurements are performed only on the ancillae, there
is never a direct backaction on the system, which is expressed
mathematically by

X

⇣t

P(⇣t)⇢Xt |⇣t = ⇢Xt (7)

for any choice of generalized measurements {Mz}. That is,
the average of ⇢Xt |⇣t over all outcomes ⇣t yields back the un-
conditional state ⇢Xt . Thus, while there may be a conditional
backaction, unconditionally the measurement is non-invasive.

The normalization factor P(⇣t) in Eq. (6) introduces a un-
wanted complication, as it forbids us to write ⇢Xt |⇣t as a map
acting on ⇢Xt�1 |⇣t�1 . This can be resolved, however, if we work
with unnormalized states. We define the completely positive,
trace non-preserving map

Ez(⇢X) = trY
n
MzU(⇢X ⌦ ⇢Y )U†M†z

o
, (8)

which is indexed by the possible outcomes z of the measure-
ments. Instead of working with ⇢Xt |⇣t in Eq. (6), we consider
the unnormalized states %Xt |⇣t , defined as the sequence gener-
ated by the map

%Xt |⇣t = Ezt

�
%Xt�1 |⇣t�1

�
(9)

with initial condition %X0 |⇣0 = ⇢X0 . One may readily verify that

trX %Xt |⇣t = trX
n
Ezt � . . . � Ez1 (⇢X0 )

o
= P(⇣t). (10)

The states %Xt |⇣t therefore contain the outcome distribution
P(⇣t) at any given time. And the normalized state in (6) is
recovered as ⇢Xt |⇣t = %Xt |⇣t/P(⇣t).

It is useful to keep in mind the interpretation of a CM2 as
a Hidden Markov model [9, 47, 48]. The system evolution
is Markovian, but this is hidden from the observer who is par-
tially ignorant about its dynamics: access to X is only possible
through the classical outcomes ⇣t. In the language of Bayesian
networks, the key issue entailed by our framework is thus
about the predictions that can be made on the state of the hid-
den layer X given the information available through the visible
layer of the outcomes ⇣t only. This highlights the nice inter-
play between quantum and classical features, present in these
models: The evolution of the system is quantum but infor-
mation is only accessed through classical data. We have also
found it illuminating to understand what would be the clas-
sical version of a CM2, as this allows us to relate our frame-
work directly with the classical formalism of Ito, Sagawa and
Ueda [9, 10]. This is addressed in Appendix A, where we also
discuss the conditions for a CM2 to be incoherent.

III. INFORMATION AND THERMODYNAMICS

A. Quantum-classical information

The information content in the unconditional state ⇢Xt can
be quantified by the von Neumann entropy S (Xt) ⌘ S (⇢Xt ) =
� tr ⇢Xt ln ⇢Xt . Similarly, the information in the conditional
state ⇢Xt |⇣t (properly normalized) is quantified by quantum-
classical conditional entropy

S (Xt |⇣t) =
X

⇣t

P(⇣t)S (⇢Xt |⇣t ). (11)
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Each term S (⇢Xt |⇣t ) quantifies the information for one specific
realization ⇣t, and S (Xt |⇣t) is then an average over all trajec-
tories. Note also that this is not the quantum conditional en-
tropy, a quantity which can be negative. Here, since we are
conditioning on classical outcomes, S (Xt |⇣t) is always strictly
non-negative. In this paper all conditional entropies will be of
this form.

The mismatch between S (Xt) and S (Xt |⇣t) is given by the
Holevo information (or Holevo quantity) [49]

I(Xt :⇣t) := S (Xt) � S (Xt |⇣t). (12)

It quantifies the information about X contained in the classical
outcomes ⇣t. Its interpretation becomes clearer by casting it as

I(Xt :⇣t) =
X

⇣t

P(⇣t) D
�
⇢Xt |⇣t ||⇢Xt

�
> 0, (13)

where D(⇢||�) = tr(⇢ ln ⇢ � ⇢ ln�) is the quantum relative en-
tropy. Therefore, I(Xt :⇣t) is the weighted average of the “dis-
tance” between ⇢Xt |⇣t and ⇢Xt .

The Holevo information reflects the integrated information,
acquired about the system, up to time t. This is di↵erent from
the small increment that is obtained from a single outcome z,
at each step. In order to quantify such di↵erential information
gain, the natural quantity is the conditional Holevo informa-
tion

Gt := Ic(Xt :zt |⇣t�1) = I(Xt :⇣t) � I(Xt :⇣t�1) (14)

= S (Xt |⇣t�1) � S (Xt |⇣t).

It describes the correlations between Xt and the latest available
outcome zt, given the past outcomes ⇣t�1 = (z1, . . . , zt�1). The
first term involves the state ⇢Xt |⇣t�1 , which stands for the state of
the system at time t, conditioned on all measurement records,
except the last one. In symbols, it can thus be written as

⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 ), (15)

where E is the unconditional map in Eq. (2). This there-
fore a↵ords a beautiful interpretation to Eq. (14). Starting
at ⇢Xt�1 |⇣t�1 , one compares two paths: a conditional evolution
taking ⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t and a unconditional evolution taking
⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t�1 . Eq. (14) measures the gain in information
of the latter, compared to the former.

B. Information rates and informational steady-states

Eq. (12) is always non-negative. However, this does not
imply that it will necessarily increase with time. In fact, the
information rate

�It := I(Xt :⇣t) � I(Xt�1 :⇣t�1) (16)

can take any sign. This reflects the trade-o↵ between the gain
in information and the measurement backaction. A natural
question is then whether it is possible to split �It as the dif-
ference between two strictly non-negative terms, the first nat-
urally identified with the di↵erential gain of information (14),

and the second to the di↵erential information loss. That is,
whether a splitting of the form

�It = Gt � Lt, (17)

would lead to the identification of a loss term Lt which is
strictly non-negative. As we will see in what follows, the an-
swer to this question is in the positive.

To find a formula for Lt we simply insert the first line
of (14) into Eq. (16) to find

Lt := I(Xt�1 :⇣t�1) � I(Xt :⇣t�1). (18)

This is already clearly interpretable as a loss term, as it mea-
sures how information is degraded by the map in Eq. (15).
Indeed, we can show that it is strictly non-negative. To do
that, we use Eq. (13) to write Lt as

Lt =
X

⇣t�1

P(⇣t�1)
h
D(⇢Xt�1 |⇣t�1 ||⇢Xt�1 ) � D(⇢Xt |⇣t�1 ||⇢Xt )

i
. (19)

But ⇢Xt = E(⇢Xt�1 ) [Eq. (2)] and ⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 )
[Eq. (15)]. Together with the data processing inequality [50],
this is enough to ascertain the non-negativity of Lt for any
quantum channel E.

In the long time limit the system may reach a steady-state
where I1 no longer changes, so �I1 = 0. This does not
necessarily mean G1 = L1 = 0, however. It might simply
stem from a mutual balancing of gains and losses. That is,
G1 = L1 , 0. We define an informational steady-state (ISS)
as the asymptotic state for which

�IISS = 0 but GISS = LISS , 0. (20)

In an ISS, information is continuously acquired, but this is
balanced by the noise that is introduced by the measurement.
Crucially, the ISS does not mean that ⇢Xt |⇣t is no longer chang-
ing. This state is stochastic and thus continues to evolve in-
definitely. Instead, what become stationary is the stochastic
distribution of states in state-space [51].

C. Unconditional 2nd law

Next we turn to the thermodynamics. The 2nd law of ther-
modynamics characterize the degree of irreversibility of a cer-
tain process and can be formulated in purely information-
theoretic terms. This allows it to be extended beyond standard
thermal environments, and also to avoid di�culties associated
with the definition of heat and work, which can be quite prob-
lematic in the quantum regime [28].

At each collision, the entropy of the system will change
from S (Xt) to S (Xt+1). This change, however, may be either
positive or negative. The goal of the 2nd law is to identify
a contribution to this change associated with the flow of en-
tropy between system and ancilla, and another representing
the entropy that was irreversibly produced in the process. The
separation thus takes the form

�⌃u
t = S (Xt) � S (Xt�1) + ��u

t , (21)
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Each term S (⇢Xt |⇣t ) quantifies the information for one specific
realization ⇣t, and S (Xt |⇣t) is then an average over all trajec-
tories. Note also that this is not the quantum conditional en-
tropy, a quantity which can be negative. Here, since we are
conditioning on classical outcomes, S (Xt |⇣t) is always strictly
non-negative. In this paper all conditional entropies will be of
this form.

The mismatch between S (Xt) and S (Xt |⇣t) is given by the
Holevo information (or Holevo quantity) [49]
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where D(⇢||�) = tr(⇢ ln ⇢ � ⇢ ln�) is the quantum relative en-
tropy. Therefore, I(Xt :⇣t) is the weighted average of the “dis-
tance” between ⇢Xt |⇣t and ⇢Xt .

The Holevo information reflects the integrated information,
acquired about the system, up to time t. This is di↵erent from
the small increment that is obtained from a single outcome z,
at each step. In order to quantify such di↵erential information
gain, the natural quantity is the conditional Holevo informa-
tion

Gt := Ic(Xt :zt |⇣t�1) = I(Xt :⇣t) � I(Xt :⇣t�1) (14)

= S (Xt |⇣t�1) � S (Xt |⇣t).

It describes the correlations between Xt and the latest available
outcome zt, given the past outcomes ⇣t�1 = (z1, . . . , zt�1). The
first term involves the state ⇢Xt |⇣t�1 , which stands for the state of
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except the last one. In symbols, it can thus be written as

⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 ), (15)

where E is the unconditional map in Eq. (2). This there-
fore a↵ords a beautiful interpretation to Eq. (14). Starting
at ⇢Xt�1 |⇣t�1 , one compares two paths: a conditional evolution
taking ⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t and a unconditional evolution taking
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question is then whether it is possible to split �It as the dif-
ference between two strictly non-negative terms, the first nat-
urally identified with the di↵erential gain of information (14),

and the second to the di↵erential information loss. That is,
whether a splitting of the form

�It = Gt � Lt, (17)

would lead to the identification of a loss term Lt which is
strictly non-negative. As we will see in what follows, the an-
swer to this question is in the positive.

To find a formula for Lt we simply insert the first line
of (14) into Eq. (16) to find
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ing. This state is stochastic and thus continues to evolve in-
definitely. Instead, what become stationary is the stochastic
distribution of states in state-space [51].
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Next we turn to the thermodynamics. The 2nd law of ther-
modynamics characterize the degree of irreversibility of a cer-
tain process and can be formulated in purely information-
theoretic terms. This allows it to be extended beyond standard
thermal environments, and also to avoid di�culties associated
with the definition of heat and work, which can be quite prob-
lematic in the quantum regime [28].

At each collision, the entropy of the system will change
from S (Xt) to S (Xt+1). This change, however, may be either
positive or negative. The goal of the 2nd law is to identify
a contribution to this change associated with the flow of en-
tropy between system and ancilla, and another representing
the entropy that was irreversibly produced in the process. The
separation thus takes the form
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realization ⇣t, and S (Xt |⇣t) is then an average over all trajec-
tories. Note also that this is not the quantum conditional en-
tropy, a quantity which can be negative. Here, since we are
conditioning on classical outcomes, S (Xt |⇣t) is always strictly
non-negative. In this paper all conditional entropies will be of
this form.

The mismatch between S (Xt) and S (Xt |⇣t) is given by the
Holevo information (or Holevo quantity) [49]

I(Xt :⇣t) := S (Xt) � S (Xt |⇣t). (12)

It quantifies the information about X contained in the classical
outcomes ⇣t. Its interpretation becomes clearer by casting it as
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where D(⇢||�) = tr(⇢ ln ⇢ � ⇢ ln�) is the quantum relative en-
tropy. Therefore, I(Xt :⇣t) is the weighted average of the “dis-
tance” between ⇢Xt |⇣t and ⇢Xt .

The Holevo information reflects the integrated information,
acquired about the system, up to time t. This is di↵erent from
the small increment that is obtained from a single outcome z,
at each step. In order to quantify such di↵erential information
gain, the natural quantity is the conditional Holevo informa-
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Gt := Ic(Xt :zt |⇣t�1) = I(Xt :⇣t) � I(Xt :⇣t�1) (14)

= S (Xt |⇣t�1) � S (Xt |⇣t).

It describes the correlations between Xt and the latest available
outcome zt, given the past outcomes ⇣t�1 = (z1, . . . , zt�1). The
first term involves the state ⇢Xt |⇣t�1 , which stands for the state of
the system at time t, conditioned on all measurement records,
except the last one. In symbols, it can thus be written as

⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 ), (15)

where E is the unconditional map in Eq. (2). This there-
fore a↵ords a beautiful interpretation to Eq. (14). Starting
at ⇢Xt�1 |⇣t�1 , one compares two paths: a conditional evolution
taking ⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t and a unconditional evolution taking
⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t�1 . Eq. (14) measures the gain in information
of the latter, compared to the former.

B. Information rates and informational steady-states

Eq. (12) is always non-negative. However, this does not
imply that it will necessarily increase with time. In fact, the
information rate

�It := I(Xt :⇣t) � I(Xt�1 :⇣t�1) (16)

can take any sign. This reflects the trade-o↵ between the gain
in information and the measurement backaction. A natural
question is then whether it is possible to split �It as the dif-
ference between two strictly non-negative terms, the first nat-
urally identified with the di↵erential gain of information (14),

and the second to the di↵erential information loss. That is,
whether a splitting of the form

�It = Gt � Lt, (17)

would lead to the identification of a loss term Lt which is
strictly non-negative. As we will see in what follows, the an-
swer to this question is in the positive.

To find a formula for Lt we simply insert the first line
of (14) into Eq. (16) to find

Lt := I(Xt�1 :⇣t�1) � I(Xt :⇣t�1). (18)

This is already clearly interpretable as a loss term, as it mea-
sures how information is degraded by the map in Eq. (15).
Indeed, we can show that it is strictly non-negative. To do
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But ⇢Xt = E(⇢Xt�1 ) [Eq. (2)] and ⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 )
[Eq. (15)]. Together with the data processing inequality [50],
this is enough to ascertain the non-negativity of Lt for any
quantum channel E.
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where I1 no longer changes, so �I1 = 0. This does not
necessarily mean G1 = L1 = 0, however. It might simply
stem from a mutual balancing of gains and losses. That is,
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as the asymptotic state for which

�IISS = 0 but GISS = LISS , 0. (20)

In an ISS, information is continuously acquired, but this is
balanced by the noise that is introduced by the measurement.
Crucially, the ISS does not mean that ⇢Xt |⇣t is no longer chang-
ing. This state is stochastic and thus continues to evolve in-
definitely. Instead, what become stationary is the stochastic
distribution of states in state-space [51].

C. Unconditional 2nd law

Next we turn to the thermodynamics. The 2nd law of ther-
modynamics characterize the degree of irreversibility of a cer-
tain process and can be formulated in purely information-
theoretic terms. This allows it to be extended beyond standard
thermal environments, and also to avoid di�culties associated
with the definition of heat and work, which can be quite prob-
lematic in the quantum regime [28].

At each collision, the entropy of the system will change
from S (Xt) to S (Xt+1). This change, however, may be either
positive or negative. The goal of the 2nd law is to identify
a contribution to this change associated with the flow of en-
tropy between system and ancilla, and another representing
the entropy that was irreversibly produced in the process. The
separation thus takes the form
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Each term S (⇢Xt |⇣t ) quantifies the information for one specific
realization ⇣t, and S (Xt |⇣t) is then an average over all trajec-
tories. Note also that this is not the quantum conditional en-
tropy, a quantity which can be negative. Here, since we are
conditioning on classical outcomes, S (Xt |⇣t) is always strictly
non-negative. In this paper all conditional entropies will be of
this form.

The mismatch between S (Xt) and S (Xt |⇣t) is given by the
Holevo information (or Holevo quantity) [49]

I(Xt :⇣t) := S (Xt) � S (Xt |⇣t). (12)

It quantifies the information about X contained in the classical
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where D(⇢||�) = tr(⇢ ln ⇢ � ⇢ ln�) is the quantum relative en-
tropy. Therefore, I(Xt :⇣t) is the weighted average of the “dis-
tance” between ⇢Xt |⇣t and ⇢Xt .

The Holevo information reflects the integrated information,
acquired about the system, up to time t. This is di↵erent from
the small increment that is obtained from a single outcome z,
at each step. In order to quantify such di↵erential information
gain, the natural quantity is the conditional Holevo informa-
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Gt := Ic(Xt :zt |⇣t�1) = I(Xt :⇣t) � I(Xt :⇣t�1) (14)

= S (Xt |⇣t�1) � S (Xt |⇣t).

It describes the correlations between Xt and the latest available
outcome zt, given the past outcomes ⇣t�1 = (z1, . . . , zt�1). The
first term involves the state ⇢Xt |⇣t�1 , which stands for the state of
the system at time t, conditioned on all measurement records,
except the last one. In symbols, it can thus be written as

⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 ), (15)

where E is the unconditional map in Eq. (2). This there-
fore a↵ords a beautiful interpretation to Eq. (14). Starting
at ⇢Xt�1 |⇣t�1 , one compares two paths: a conditional evolution
taking ⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t and a unconditional evolution taking
⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t�1 . Eq. (14) measures the gain in information
of the latter, compared to the former.
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Eq. (12) is always non-negative. However, this does not
imply that it will necessarily increase with time. In fact, the
information rate
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can take any sign. This reflects the trade-o↵ between the gain
in information and the measurement backaction. A natural
question is then whether it is possible to split �It as the dif-
ference between two strictly non-negative terms, the first nat-
urally identified with the di↵erential gain of information (14),

and the second to the di↵erential information loss. That is,
whether a splitting of the form

�It = Gt � Lt, (17)

would lead to the identification of a loss term Lt which is
strictly non-negative. As we will see in what follows, the an-
swer to this question is in the positive.

To find a formula for Lt we simply insert the first line
of (14) into Eq. (16) to find
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But ⇢Xt = E(⇢Xt�1 ) [Eq. (2)] and ⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 )
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�IISS = 0 but GISS = LISS , 0. (20)
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balanced by the noise that is introduced by the measurement.
Crucially, the ISS does not mean that ⇢Xt |⇣t is no longer chang-
ing. This state is stochastic and thus continues to evolve in-
definitely. Instead, what become stationary is the stochastic
distribution of states in state-space [51].

C. Unconditional 2nd law

Next we turn to the thermodynamics. The 2nd law of ther-
modynamics characterize the degree of irreversibility of a cer-
tain process and can be formulated in purely information-
theoretic terms. This allows it to be extended beyond standard
thermal environments, and also to avoid di�culties associated
with the definition of heat and work, which can be quite prob-
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At each collision, the entropy of the system will change
from S (Xt) to S (Xt+1). This change, however, may be either
positive or negative. The goal of the 2nd law is to identify
a contribution to this change associated with the flow of en-
tropy between system and ancilla, and another representing
the entropy that was irreversibly produced in the process. The
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non-negative. In this paper all conditional entropies will be of
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Holevo information (or Holevo quantity) [49]

I(Xt :⇣t) := S (Xt) � S (Xt |⇣t). (12)

It quantifies the information about X contained in the classical
outcomes ⇣t. Its interpretation becomes clearer by casting it as

I(Xt :⇣t) =
X

⇣t

P(⇣t) D
�
⇢Xt |⇣t ||⇢Xt

�
> 0, (13)

where D(⇢||�) = tr(⇢ ln ⇢ � ⇢ ln�) is the quantum relative en-
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the small increment that is obtained from a single outcome z,
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except the last one. In symbols, it can thus be written as
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where E is the unconditional map in Eq. (2). This there-
fore a↵ords a beautiful interpretation to Eq. (14). Starting
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taking ⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t and a unconditional evolution taking
⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t�1 . Eq. (14) measures the gain in information
of the latter, compared to the former.
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Eq. (12) is always non-negative. However, this does not
imply that it will necessarily increase with time. In fact, the
information rate
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can take any sign. This reflects the trade-o↵ between the gain
in information and the measurement backaction. A natural
question is then whether it is possible to split �It as the dif-
ference between two strictly non-negative terms, the first nat-
urally identified with the di↵erential gain of information (14),

and the second to the di↵erential information loss. That is,
whether a splitting of the form

�It = Gt � Lt, (17)

would lead to the identification of a loss term Lt which is
strictly non-negative. As we will see in what follows, the an-
swer to this question is in the positive.

To find a formula for Lt we simply insert the first line
of (14) into Eq. (16) to find

Lt := I(Xt�1 :⇣t�1) � I(Xt :⇣t�1). (18)

This is already clearly interpretable as a loss term, as it mea-
sures how information is degraded by the map in Eq. (15).
Indeed, we can show that it is strictly non-negative. To do
that, we use Eq. (13) to write Lt as

Lt =
X

⇣t�1

P(⇣t�1)
h
D(⇢Xt�1 |⇣t�1 ||⇢Xt�1 ) � D(⇢Xt |⇣t�1 ||⇢Xt )

i
. (19)

But ⇢Xt = E(⇢Xt�1 ) [Eq. (2)] and ⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 )
[Eq. (15)]. Together with the data processing inequality [50],
this is enough to ascertain the non-negativity of Lt for any
quantum channel E.

In the long time limit the system may reach a steady-state
where I1 no longer changes, so �I1 = 0. This does not
necessarily mean G1 = L1 = 0, however. It might simply
stem from a mutual balancing of gains and losses. That is,
G1 = L1 , 0. We define an informational steady-state (ISS)
as the asymptotic state for which

�IISS = 0 but GISS = LISS , 0. (20)

In an ISS, information is continuously acquired, but this is
balanced by the noise that is introduced by the measurement.
Crucially, the ISS does not mean that ⇢Xt |⇣t is no longer chang-
ing. This state is stochastic and thus continues to evolve in-
definitely. Instead, what become stationary is the stochastic
distribution of states in state-space [51].

C. Unconditional 2nd law

Next we turn to the thermodynamics. The 2nd law of ther-
modynamics characterize the degree of irreversibility of a cer-
tain process and can be formulated in purely information-
theoretic terms. This allows it to be extended beyond standard
thermal environments, and also to avoid di�culties associated
with the definition of heat and work, which can be quite prob-
lematic in the quantum regime [28].

At each collision, the entropy of the system will change
from S (Xt) to S (Xt+1). This change, however, may be either
positive or negative. The goal of the 2nd law is to identify
a contribution to this change associated with the flow of en-
tropy between system and ancilla, and another representing
the entropy that was irreversibly produced in the process. The
separation thus takes the form

�⌃u
t = S (Xt) � S (Xt�1) + ��u

t , (21)
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FIG. 1. (a) A typical method for continuously monitoring a system is to couple it to an optical cavity and measure the photons leaking out.
(b) In a collisional model picture, the monitoring is introduced instead through a series of sequential collisions between the system X and
independent ancillae Yt, which are subjected to measurement after each collision. (c) Diagrammatic representation of the model. The system
is described stroboscopically (discrete time) by a state ⇢Xt . At each instant of time, it interacts with an independent ancilla, prepared in state
⇢Y , according to the map in Eq. (1). Afterwards, the ancillae are measured, as described by generalized measurement operators {Mz}, which
produce a classical (and random) outcome zt. (d) As time progresses, one builds up a measurement record ⇣t = (z1, . . . , zt), which contains all
the information acquired about X up to time t.

As the measurements are performed only on the ancillae, there
is never a direct backaction on the system, which is expressed
mathematically by

X

⇣t

P(⇣t)⇢Xt |⇣t = ⇢Xt (7)

for any choice of generalized measurements {Mz}. That is,
the average of ⇢Xt |⇣t over all outcomes ⇣t yields back the un-
conditional state ⇢Xt . Thus, while there may be a conditional
backaction, unconditionally the measurement is non-invasive.

The normalization factor P(⇣t) in Eq. (6) introduces a un-
wanted complication, as it forbids us to write ⇢Xt |⇣t as a map
acting on ⇢Xt�1 |⇣t�1 . This can be resolved, however, if we work
with unnormalized states. We define the completely positive,
trace non-preserving map

Ez(⇢X) = trY
n
MzU(⇢X ⌦ ⇢Y )U†M†z

o
, (8)

which is indexed by the possible outcomes z of the measure-
ments. Instead of working with ⇢Xt |⇣t in Eq. (6), we consider
the unnormalized states %Xt |⇣t , defined as the sequence gener-
ated by the map

%Xt |⇣t = Ezt

�
%Xt�1 |⇣t�1

�
(9)

with initial condition %X0 |⇣0 = ⇢X0 . One may readily verify that

trX %Xt |⇣t = trX
n
Ezt � . . . � Ez1 (⇢X0 )

o
= P(⇣t). (10)

The states %Xt |⇣t therefore contain the outcome distribution
P(⇣t) at any given time. And the normalized state in (6) is
recovered as ⇢Xt |⇣t = %Xt |⇣t/P(⇣t).

It is useful to keep in mind the interpretation of a CM2 as
a Hidden Markov model [9, 47, 48]. The system evolution
is Markovian, but this is hidden from the observer who is par-
tially ignorant about its dynamics: access to X is only possible
through the classical outcomes ⇣t. In the language of Bayesian
networks, the key issue entailed by our framework is thus
about the predictions that can be made on the state of the hid-
den layer X given the information available through the visible
layer of the outcomes ⇣t only. This highlights the nice inter-
play between quantum and classical features, present in these
models: The evolution of the system is quantum but infor-
mation is only accessed through classical data. We have also
found it illuminating to understand what would be the clas-
sical version of a CM2, as this allows us to relate our frame-
work directly with the classical formalism of Ito, Sagawa and
Ueda [9, 10]. This is addressed in Appendix A, where we also
discuss the conditions for a CM2 to be incoherent.

III. INFORMATION AND THERMODYNAMICS

A. Quantum-classical information

The information content in the unconditional state ⇢Xt can
be quantified by the von Neumann entropy S (Xt) ⌘ S (⇢Xt ) =
� tr ⇢Xt ln ⇢Xt . Similarly, the information in the conditional
state ⇢Xt |⇣t (properly normalized) is quantified by quantum-
classical conditional entropy

S (Xt |⇣t) =
X

⇣t

P(⇣t)S (⇢Xt |⇣t ). (11)
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Each term S (⇢Xt |⇣t ) quantifies the information for one specific
realization ⇣t, and S (Xt |⇣t) is then an average over all trajec-
tories. Note also that this is not the quantum conditional en-
tropy, a quantity which can be negative. Here, since we are
conditioning on classical outcomes, S (Xt |⇣t) is always strictly
non-negative. In this paper all conditional entropies will be of
this form.

The mismatch between S (Xt) and S (Xt |⇣t) is given by the
Holevo information (or Holevo quantity) [49]

I(Xt :⇣t) := S (Xt) � S (Xt |⇣t). (12)

It quantifies the information about X contained in the classical
outcomes ⇣t. Its interpretation becomes clearer by casting it as

I(Xt :⇣t) =
X

⇣t

P(⇣t) D
�
⇢Xt |⇣t ||⇢Xt

�
> 0, (13)

where D(⇢||�) = tr(⇢ ln ⇢ � ⇢ ln�) is the quantum relative en-
tropy. Therefore, I(Xt :⇣t) is the weighted average of the “dis-
tance” between ⇢Xt |⇣t and ⇢Xt .

The Holevo information reflects the integrated information,
acquired about the system, up to time t. This is di↵erent from
the small increment that is obtained from a single outcome z,
at each step. In order to quantify such di↵erential information
gain, the natural quantity is the conditional Holevo informa-
tion

Gt := Ic(Xt :zt |⇣t�1) = I(Xt :⇣t) � I(Xt :⇣t�1) (14)

= S (Xt |⇣t�1) � S (Xt |⇣t).

It describes the correlations between Xt and the latest available
outcome zt, given the past outcomes ⇣t�1 = (z1, . . . , zt�1). The
first term involves the state ⇢Xt |⇣t�1 , which stands for the state of
the system at time t, conditioned on all measurement records,
except the last one. In symbols, it can thus be written as

⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 ), (15)

where E is the unconditional map in Eq. (2). This there-
fore a↵ords a beautiful interpretation to Eq. (14). Starting
at ⇢Xt�1 |⇣t�1 , one compares two paths: a conditional evolution
taking ⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t and a unconditional evolution taking
⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t�1 . Eq. (14) measures the gain in information
of the latter, compared to the former.

B. Information rates and informational steady-states

Eq. (12) is always non-negative. However, this does not
imply that it will necessarily increase with time. In fact, the
information rate

�It := I(Xt :⇣t) � I(Xt�1 :⇣t�1) (16)

can take any sign. This reflects the trade-o↵ between the gain
in information and the measurement backaction. A natural
question is then whether it is possible to split �It as the dif-
ference between two strictly non-negative terms, the first nat-
urally identified with the di↵erential gain of information (14),

and the second to the di↵erential information loss. That is,
whether a splitting of the form

�It = Gt � Lt, (17)

would lead to the identification of a loss term Lt which is
strictly non-negative. As we will see in what follows, the an-
swer to this question is in the positive.

To find a formula for Lt we simply insert the first line
of (14) into Eq. (16) to find

Lt := I(Xt�1 :⇣t�1) � I(Xt :⇣t�1). (18)

This is already clearly interpretable as a loss term, as it mea-
sures how information is degraded by the map in Eq. (15).
Indeed, we can show that it is strictly non-negative. To do
that, we use Eq. (13) to write Lt as

Lt =
X

⇣t�1

P(⇣t�1)
h
D(⇢Xt�1 |⇣t�1 ||⇢Xt�1 ) � D(⇢Xt |⇣t�1 ||⇢Xt )

i
. (19)

But ⇢Xt = E(⇢Xt�1 ) [Eq. (2)] and ⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 )
[Eq. (15)]. Together with the data processing inequality [50],
this is enough to ascertain the non-negativity of Lt for any
quantum channel E.

In the long time limit the system may reach a steady-state
where I1 no longer changes, so �I1 = 0. This does not
necessarily mean G1 = L1 = 0, however. It might simply
stem from a mutual balancing of gains and losses. That is,
G1 = L1 , 0. We define an informational steady-state (ISS)
as the asymptotic state for which

�IISS = 0 but GISS = LISS , 0. (20)

In an ISS, information is continuously acquired, but this is
balanced by the noise that is introduced by the measurement.
Crucially, the ISS does not mean that ⇢Xt |⇣t is no longer chang-
ing. This state is stochastic and thus continues to evolve in-
definitely. Instead, what become stationary is the stochastic
distribution of states in state-space [51].

C. Unconditional 2nd law

Next we turn to the thermodynamics. The 2nd law of ther-
modynamics characterize the degree of irreversibility of a cer-
tain process and can be formulated in purely information-
theoretic terms. This allows it to be extended beyond standard
thermal environments, and also to avoid di�culties associated
with the definition of heat and work, which can be quite prob-
lematic in the quantum regime [28].

At each collision, the entropy of the system will change
from S (Xt) to S (Xt+1). This change, however, may be either
positive or negative. The goal of the 2nd law is to identify
a contribution to this change associated with the flow of en-
tropy between system and ancilla, and another representing
the entropy that was irreversibly produced in the process. The
separation thus takes the form

�⌃u
t = S (Xt) � S (Xt�1) + ��u

t , (21)
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Each term S (⇢Xt |⇣t ) quantifies the information for one specific
realization ⇣t, and S (Xt |⇣t) is then an average over all trajec-
tories. Note also that this is not the quantum conditional en-
tropy, a quantity which can be negative. Here, since we are
conditioning on classical outcomes, S (Xt |⇣t) is always strictly
non-negative. In this paper all conditional entropies will be of
this form.

The mismatch between S (Xt) and S (Xt |⇣t) is given by the
Holevo information (or Holevo quantity) [49]

I(Xt :⇣t) := S (Xt) � S (Xt |⇣t). (12)

It quantifies the information about X contained in the classical
outcomes ⇣t. Its interpretation becomes clearer by casting it as

I(Xt :⇣t) =
X

⇣t

P(⇣t) D
�
⇢Xt |⇣t ||⇢Xt

�
> 0, (13)

where D(⇢||�) = tr(⇢ ln ⇢ � ⇢ ln�) is the quantum relative en-
tropy. Therefore, I(Xt :⇣t) is the weighted average of the “dis-
tance” between ⇢Xt |⇣t and ⇢Xt .

The Holevo information reflects the integrated information,
acquired about the system, up to time t. This is di↵erent from
the small increment that is obtained from a single outcome z,
at each step. In order to quantify such di↵erential information
gain, the natural quantity is the conditional Holevo informa-
tion

Gt := Ic(Xt :zt |⇣t�1) = I(Xt :⇣t) � I(Xt :⇣t�1) (14)

= S (Xt |⇣t�1) � S (Xt |⇣t).

It describes the correlations between Xt and the latest available
outcome zt, given the past outcomes ⇣t�1 = (z1, . . . , zt�1). The
first term involves the state ⇢Xt |⇣t�1 , which stands for the state of
the system at time t, conditioned on all measurement records,
except the last one. In symbols, it can thus be written as

⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 ), (15)

where E is the unconditional map in Eq. (2). This there-
fore a↵ords a beautiful interpretation to Eq. (14). Starting
at ⇢Xt�1 |⇣t�1 , one compares two paths: a conditional evolution
taking ⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t and a unconditional evolution taking
⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t�1 . Eq. (14) measures the gain in information
of the latter, compared to the former.

B. Information rates and informational steady-states

Eq. (12) is always non-negative. However, this does not
imply that it will necessarily increase with time. In fact, the
information rate

�It := I(Xt :⇣t) � I(Xt�1 :⇣t�1) (16)

can take any sign. This reflects the trade-o↵ between the gain
in information and the measurement backaction. A natural
question is then whether it is possible to split �It as the dif-
ference between two strictly non-negative terms, the first nat-
urally identified with the di↵erential gain of information (14),

and the second to the di↵erential information loss. That is,
whether a splitting of the form

�It = Gt � Lt, (17)

would lead to the identification of a loss term Lt which is
strictly non-negative. As we will see in what follows, the an-
swer to this question is in the positive.

To find a formula for Lt we simply insert the first line
of (14) into Eq. (16) to find

Lt := I(Xt�1 :⇣t�1) � I(Xt :⇣t�1). (18)

This is already clearly interpretable as a loss term, as it mea-
sures how information is degraded by the map in Eq. (15).
Indeed, we can show that it is strictly non-negative. To do
that, we use Eq. (13) to write Lt as

Lt =
X

⇣t�1

P(⇣t�1)
h
D(⇢Xt�1 |⇣t�1 ||⇢Xt�1 ) � D(⇢Xt |⇣t�1 ||⇢Xt )

i
. (19)

But ⇢Xt = E(⇢Xt�1 ) [Eq. (2)] and ⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 )
[Eq. (15)]. Together with the data processing inequality [50],
this is enough to ascertain the non-negativity of Lt for any
quantum channel E.

In the long time limit the system may reach a steady-state
where I1 no longer changes, so �I1 = 0. This does not
necessarily mean G1 = L1 = 0, however. It might simply
stem from a mutual balancing of gains and losses. That is,
G1 = L1 , 0. We define an informational steady-state (ISS)
as the asymptotic state for which

�IISS = 0 but GISS = LISS , 0. (20)

In an ISS, information is continuously acquired, but this is
balanced by the noise that is introduced by the measurement.
Crucially, the ISS does not mean that ⇢Xt |⇣t is no longer chang-
ing. This state is stochastic and thus continues to evolve in-
definitely. Instead, what become stationary is the stochastic
distribution of states in state-space [51].

C. Unconditional 2nd law

Next we turn to the thermodynamics. The 2nd law of ther-
modynamics characterize the degree of irreversibility of a cer-
tain process and can be formulated in purely information-
theoretic terms. This allows it to be extended beyond standard
thermal environments, and also to avoid di�culties associated
with the definition of heat and work, which can be quite prob-
lematic in the quantum regime [28].

At each collision, the entropy of the system will change
from S (Xt) to S (Xt+1). This change, however, may be either
positive or negative. The goal of the 2nd law is to identify
a contribution to this change associated with the flow of en-
tropy between system and ancilla, and another representing
the entropy that was irreversibly produced in the process. The
separation thus takes the form

�⌃u
t = S (Xt) � S (Xt�1) + ��u

t , (21)

4

Each term S (⇢Xt |⇣t ) quantifies the information for one specific
realization ⇣t, and S (Xt |⇣t) is then an average over all trajec-
tories. Note also that this is not the quantum conditional en-
tropy, a quantity which can be negative. Here, since we are
conditioning on classical outcomes, S (Xt |⇣t) is always strictly
non-negative. In this paper all conditional entropies will be of
this form.

The mismatch between S (Xt) and S (Xt |⇣t) is given by the
Holevo information (or Holevo quantity) [49]

I(Xt :⇣t) := S (Xt) � S (Xt |⇣t). (12)

It quantifies the information about X contained in the classical
outcomes ⇣t. Its interpretation becomes clearer by casting it as

I(Xt :⇣t) =
X

⇣t

P(⇣t) D
�
⇢Xt |⇣t ||⇢Xt

�
> 0, (13)

where D(⇢||�) = tr(⇢ ln ⇢ � ⇢ ln�) is the quantum relative en-
tropy. Therefore, I(Xt :⇣t) is the weighted average of the “dis-
tance” between ⇢Xt |⇣t and ⇢Xt .

The Holevo information reflects the integrated information,
acquired about the system, up to time t. This is di↵erent from
the small increment that is obtained from a single outcome z,
at each step. In order to quantify such di↵erential information
gain, the natural quantity is the conditional Holevo informa-
tion

Gt := Ic(Xt :zt |⇣t�1) = I(Xt :⇣t) � I(Xt :⇣t�1) (14)

= S (Xt |⇣t�1) � S (Xt |⇣t).

It describes the correlations between Xt and the latest available
outcome zt, given the past outcomes ⇣t�1 = (z1, . . . , zt�1). The
first term involves the state ⇢Xt |⇣t�1 , which stands for the state of
the system at time t, conditioned on all measurement records,
except the last one. In symbols, it can thus be written as

⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 ), (15)

where E is the unconditional map in Eq. (2). This there-
fore a↵ords a beautiful interpretation to Eq. (14). Starting
at ⇢Xt�1 |⇣t�1 , one compares two paths: a conditional evolution
taking ⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t and a unconditional evolution taking
⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t�1 . Eq. (14) measures the gain in information
of the latter, compared to the former.

B. Information rates and informational steady-states

Eq. (12) is always non-negative. However, this does not
imply that it will necessarily increase with time. In fact, the
information rate

�It := I(Xt :⇣t) � I(Xt�1 :⇣t�1) (16)

can take any sign. This reflects the trade-o↵ between the gain
in information and the measurement backaction. A natural
question is then whether it is possible to split �It as the dif-
ference between two strictly non-negative terms, the first nat-
urally identified with the di↵erential gain of information (14),

and the second to the di↵erential information loss. That is,
whether a splitting of the form

�It = Gt � Lt, (17)

would lead to the identification of a loss term Lt which is
strictly non-negative. As we will see in what follows, the an-
swer to this question is in the positive.

To find a formula for Lt we simply insert the first line
of (14) into Eq. (16) to find

Lt := I(Xt�1 :⇣t�1) � I(Xt :⇣t�1). (18)

This is already clearly interpretable as a loss term, as it mea-
sures how information is degraded by the map in Eq. (15).
Indeed, we can show that it is strictly non-negative. To do
that, we use Eq. (13) to write Lt as

Lt =
X

⇣t�1

P(⇣t�1)
h
D(⇢Xt�1 |⇣t�1 ||⇢Xt�1 ) � D(⇢Xt |⇣t�1 ||⇢Xt )
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But ⇢Xt = E(⇢Xt�1 ) [Eq. (2)] and ⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 )
[Eq. (15)]. Together with the data processing inequality [50],
this is enough to ascertain the non-negativity of Lt for any
quantum channel E.

In the long time limit the system may reach a steady-state
where I1 no longer changes, so �I1 = 0. This does not
necessarily mean G1 = L1 = 0, however. It might simply
stem from a mutual balancing of gains and losses. That is,
G1 = L1 , 0. We define an informational steady-state (ISS)
as the asymptotic state for which

�IISS = 0 but GISS = LISS , 0. (20)

In an ISS, information is continuously acquired, but this is
balanced by the noise that is introduced by the measurement.
Crucially, the ISS does not mean that ⇢Xt |⇣t is no longer chang-
ing. This state is stochastic and thus continues to evolve in-
definitely. Instead, what become stationary is the stochastic
distribution of states in state-space [51].

C. Unconditional 2nd law

Next we turn to the thermodynamics. The 2nd law of ther-
modynamics characterize the degree of irreversibility of a cer-
tain process and can be formulated in purely information-
theoretic terms. This allows it to be extended beyond standard
thermal environments, and also to avoid di�culties associated
with the definition of heat and work, which can be quite prob-
lematic in the quantum regime [28].

At each collision, the entropy of the system will change
from S (Xt) to S (Xt+1). This change, however, may be either
positive or negative. The goal of the 2nd law is to identify
a contribution to this change associated with the flow of en-
tropy between system and ancilla, and another representing
the entropy that was irreversibly produced in the process. The
separation thus takes the form

�⌃u
t = S (Xt) � S (Xt�1) + ��u

t , (21)
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Each term S (⇢Xt |⇣t ) quantifies the information for one specific
realization ⇣t, and S (Xt |⇣t) is then an average over all trajec-
tories. Note also that this is not the quantum conditional en-
tropy, a quantity which can be negative. Here, since we are
conditioning on classical outcomes, S (Xt |⇣t) is always strictly
non-negative. In this paper all conditional entropies will be of
this form.

The mismatch between S (Xt) and S (Xt |⇣t) is given by the
Holevo information (or Holevo quantity) [49]

I(Xt :⇣t) := S (Xt) � S (Xt |⇣t). (12)

It quantifies the information about X contained in the classical
outcomes ⇣t. Its interpretation becomes clearer by casting it as

I(Xt :⇣t) =
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⇣t

P(⇣t) D
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⇢Xt |⇣t ||⇢Xt

�
> 0, (13)

where D(⇢||�) = tr(⇢ ln ⇢ � ⇢ ln�) is the quantum relative en-
tropy. Therefore, I(Xt :⇣t) is the weighted average of the “dis-
tance” between ⇢Xt |⇣t and ⇢Xt .

The Holevo information reflects the integrated information,
acquired about the system, up to time t. This is di↵erent from
the small increment that is obtained from a single outcome z,
at each step. In order to quantify such di↵erential information
gain, the natural quantity is the conditional Holevo informa-
tion

Gt := Ic(Xt :zt |⇣t�1) = I(Xt :⇣t) � I(Xt :⇣t�1) (14)

= S (Xt |⇣t�1) � S (Xt |⇣t).

It describes the correlations between Xt and the latest available
outcome zt, given the past outcomes ⇣t�1 = (z1, . . . , zt�1). The
first term involves the state ⇢Xt |⇣t�1 , which stands for the state of
the system at time t, conditioned on all measurement records,
except the last one. In symbols, it can thus be written as

⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 ), (15)

where E is the unconditional map in Eq. (2). This there-
fore a↵ords a beautiful interpretation to Eq. (14). Starting
at ⇢Xt�1 |⇣t�1 , one compares two paths: a conditional evolution
taking ⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t and a unconditional evolution taking
⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t�1 . Eq. (14) measures the gain in information
of the latter, compared to the former.

B. Information rates and informational steady-states

Eq. (12) is always non-negative. However, this does not
imply that it will necessarily increase with time. In fact, the
information rate

�It := I(Xt :⇣t) � I(Xt�1 :⇣t�1) (16)

can take any sign. This reflects the trade-o↵ between the gain
in information and the measurement backaction. A natural
question is then whether it is possible to split �It as the dif-
ference between two strictly non-negative terms, the first nat-
urally identified with the di↵erential gain of information (14),

and the second to the di↵erential information loss. That is,
whether a splitting of the form

�It = Gt � Lt, (17)

would lead to the identification of a loss term Lt which is
strictly non-negative. As we will see in what follows, the an-
swer to this question is in the positive.

To find a formula for Lt we simply insert the first line
of (14) into Eq. (16) to find

Lt := I(Xt�1 :⇣t�1) � I(Xt :⇣t�1). (18)

This is already clearly interpretable as a loss term, as it mea-
sures how information is degraded by the map in Eq. (15).
Indeed, we can show that it is strictly non-negative. To do
that, we use Eq. (13) to write Lt as

Lt =
X

⇣t�1

P(⇣t�1)
h
D(⇢Xt�1 |⇣t�1 ||⇢Xt�1 ) � D(⇢Xt |⇣t�1 ||⇢Xt )

i
. (19)

But ⇢Xt = E(⇢Xt�1 ) [Eq. (2)] and ⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 )
[Eq. (15)]. Together with the data processing inequality [50],
this is enough to ascertain the non-negativity of Lt for any
quantum channel E.

In the long time limit the system may reach a steady-state
where I1 no longer changes, so �I1 = 0. This does not
necessarily mean G1 = L1 = 0, however. It might simply
stem from a mutual balancing of gains and losses. That is,
G1 = L1 , 0. We define an informational steady-state (ISS)
as the asymptotic state for which

�IISS = 0 but GISS = LISS , 0. (20)

In an ISS, information is continuously acquired, but this is
balanced by the noise that is introduced by the measurement.
Crucially, the ISS does not mean that ⇢Xt |⇣t is no longer chang-
ing. This state is stochastic and thus continues to evolve in-
definitely. Instead, what become stationary is the stochastic
distribution of states in state-space [51].

C. Unconditional 2nd law

Next we turn to the thermodynamics. The 2nd law of ther-
modynamics characterize the degree of irreversibility of a cer-
tain process and can be formulated in purely information-
theoretic terms. This allows it to be extended beyond standard
thermal environments, and also to avoid di�culties associated
with the definition of heat and work, which can be quite prob-
lematic in the quantum regime [28].

At each collision, the entropy of the system will change
from S (Xt) to S (Xt+1). This change, however, may be either
positive or negative. The goal of the 2nd law is to identify
a contribution to this change associated with the flow of en-
tropy between system and ancilla, and another representing
the entropy that was irreversibly produced in the process. The
separation thus takes the form

�⌃u
t = S (Xt) � S (Xt�1) + ��u

t , (21)
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Each term S (⇢Xt |⇣t ) quantifies the information for one specific
realization ⇣t, and S (Xt |⇣t) is then an average over all trajec-
tories. Note also that this is not the quantum conditional en-
tropy, a quantity which can be negative. Here, since we are
conditioning on classical outcomes, S (Xt |⇣t) is always strictly
non-negative. In this paper all conditional entropies will be of
this form.

The mismatch between S (Xt) and S (Xt |⇣t) is given by the
Holevo information (or Holevo quantity) [49]

I(Xt :⇣t) := S (Xt) � S (Xt |⇣t). (12)

It quantifies the information about X contained in the classical
outcomes ⇣t. Its interpretation becomes clearer by casting it as

I(Xt :⇣t) =
X

⇣t

P(⇣t) D
�
⇢Xt |⇣t ||⇢Xt

�
> 0, (13)

where D(⇢||�) = tr(⇢ ln ⇢ � ⇢ ln�) is the quantum relative en-
tropy. Therefore, I(Xt :⇣t) is the weighted average of the “dis-
tance” between ⇢Xt |⇣t and ⇢Xt .

The Holevo information reflects the integrated information,
acquired about the system, up to time t. This is di↵erent from
the small increment that is obtained from a single outcome z,
at each step. In order to quantify such di↵erential information
gain, the natural quantity is the conditional Holevo informa-
tion

Gt := Ic(Xt :zt |⇣t�1) = I(Xt :⇣t) � I(Xt :⇣t�1) (14)

= S (Xt |⇣t�1) � S (Xt |⇣t).

It describes the correlations between Xt and the latest available
outcome zt, given the past outcomes ⇣t�1 = (z1, . . . , zt�1). The
first term involves the state ⇢Xt |⇣t�1 , which stands for the state of
the system at time t, conditioned on all measurement records,
except the last one. In symbols, it can thus be written as

⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 ), (15)

where E is the unconditional map in Eq. (2). This there-
fore a↵ords a beautiful interpretation to Eq. (14). Starting
at ⇢Xt�1 |⇣t�1 , one compares two paths: a conditional evolution
taking ⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t and a unconditional evolution taking
⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t�1 . Eq. (14) measures the gain in information
of the latter, compared to the former.

B. Information rates and informational steady-states

Eq. (12) is always non-negative. However, this does not
imply that it will necessarily increase with time. In fact, the
information rate

�It := I(Xt :⇣t) � I(Xt�1 :⇣t�1) (16)

can take any sign. This reflects the trade-o↵ between the gain
in information and the measurement backaction. A natural
question is then whether it is possible to split �It as the dif-
ference between two strictly non-negative terms, the first nat-
urally identified with the di↵erential gain of information (14),

and the second to the di↵erential information loss. That is,
whether a splitting of the form

�It = Gt � Lt, (17)

would lead to the identification of a loss term Lt which is
strictly non-negative. As we will see in what follows, the an-
swer to this question is in the positive.

To find a formula for Lt we simply insert the first line
of (14) into Eq. (16) to find

Lt := I(Xt�1 :⇣t�1) � I(Xt :⇣t�1). (18)

This is already clearly interpretable as a loss term, as it mea-
sures how information is degraded by the map in Eq. (15).
Indeed, we can show that it is strictly non-negative. To do
that, we use Eq. (13) to write Lt as

Lt =
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⇣t�1
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But ⇢Xt = E(⇢Xt�1 ) [Eq. (2)] and ⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 )
[Eq. (15)]. Together with the data processing inequality [50],
this is enough to ascertain the non-negativity of Lt for any
quantum channel E.

In the long time limit the system may reach a steady-state
where I1 no longer changes, so �I1 = 0. This does not
necessarily mean G1 = L1 = 0, however. It might simply
stem from a mutual balancing of gains and losses. That is,
G1 = L1 , 0. We define an informational steady-state (ISS)
as the asymptotic state for which

�IISS = 0 but GISS = LISS , 0. (20)

In an ISS, information is continuously acquired, but this is
balanced by the noise that is introduced by the measurement.
Crucially, the ISS does not mean that ⇢Xt |⇣t is no longer chang-
ing. This state is stochastic and thus continues to evolve in-
definitely. Instead, what become stationary is the stochastic
distribution of states in state-space [51].

C. Unconditional 2nd law

Next we turn to the thermodynamics. The 2nd law of ther-
modynamics characterize the degree of irreversibility of a cer-
tain process and can be formulated in purely information-
theoretic terms. This allows it to be extended beyond standard
thermal environments, and also to avoid di�culties associated
with the definition of heat and work, which can be quite prob-
lematic in the quantum regime [28].

At each collision, the entropy of the system will change
from S (Xt) to S (Xt+1). This change, however, may be either
positive or negative. The goal of the 2nd law is to identify
a contribution to this change associated with the flow of en-
tropy between system and ancilla, and another representing
the entropy that was irreversibly produced in the process. The
separation thus takes the form

�⌃u
t = S (Xt) � S (Xt�1) + ��u

t , (21)
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Each term S (⇢Xt |⇣t ) quantifies the information for one specific
realization ⇣t, and S (Xt |⇣t) is then an average over all trajec-
tories. Note also that this is not the quantum conditional en-
tropy, a quantity which can be negative. Here, since we are
conditioning on classical outcomes, S (Xt |⇣t) is always strictly
non-negative. In this paper all conditional entropies will be of
this form.

The mismatch between S (Xt) and S (Xt |⇣t) is given by the
Holevo information (or Holevo quantity) [49]

I(Xt :⇣t) := S (Xt) � S (Xt |⇣t). (12)

It quantifies the information about X contained in the classical
outcomes ⇣t. Its interpretation becomes clearer by casting it as

I(Xt :⇣t) =
X

⇣t

P(⇣t) D
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⇢Xt |⇣t ||⇢Xt
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> 0, (13)

where D(⇢||�) = tr(⇢ ln ⇢ � ⇢ ln�) is the quantum relative en-
tropy. Therefore, I(Xt :⇣t) is the weighted average of the “dis-
tance” between ⇢Xt |⇣t and ⇢Xt .

The Holevo information reflects the integrated information,
acquired about the system, up to time t. This is di↵erent from
the small increment that is obtained from a single outcome z,
at each step. In order to quantify such di↵erential information
gain, the natural quantity is the conditional Holevo informa-
tion

Gt := Ic(Xt :zt |⇣t�1) = I(Xt :⇣t) � I(Xt :⇣t�1) (14)

= S (Xt |⇣t�1) � S (Xt |⇣t).

It describes the correlations between Xt and the latest available
outcome zt, given the past outcomes ⇣t�1 = (z1, . . . , zt�1). The
first term involves the state ⇢Xt |⇣t�1 , which stands for the state of
the system at time t, conditioned on all measurement records,
except the last one. In symbols, it can thus be written as

⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 ), (15)

where E is the unconditional map in Eq. (2). This there-
fore a↵ords a beautiful interpretation to Eq. (14). Starting
at ⇢Xt�1 |⇣t�1 , one compares two paths: a conditional evolution
taking ⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t and a unconditional evolution taking
⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t�1 . Eq. (14) measures the gain in information
of the latter, compared to the former.

B. Information rates and informational steady-states

Eq. (12) is always non-negative. However, this does not
imply that it will necessarily increase with time. In fact, the
information rate

�It := I(Xt :⇣t) � I(Xt�1 :⇣t�1) (16)

can take any sign. This reflects the trade-o↵ between the gain
in information and the measurement backaction. A natural
question is then whether it is possible to split �It as the dif-
ference between two strictly non-negative terms, the first nat-
urally identified with the di↵erential gain of information (14),

and the second to the di↵erential information loss. That is,
whether a splitting of the form

�It = Gt � Lt, (17)

would lead to the identification of a loss term Lt which is
strictly non-negative. As we will see in what follows, the an-
swer to this question is in the positive.

To find a formula for Lt we simply insert the first line
of (14) into Eq. (16) to find

Lt := I(Xt�1 :⇣t�1) � I(Xt :⇣t�1). (18)

This is already clearly interpretable as a loss term, as it mea-
sures how information is degraded by the map in Eq. (15).
Indeed, we can show that it is strictly non-negative. To do
that, we use Eq. (13) to write Lt as

Lt =
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But ⇢Xt = E(⇢Xt�1 ) [Eq. (2)] and ⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 )
[Eq. (15)]. Together with the data processing inequality [50],
this is enough to ascertain the non-negativity of Lt for any
quantum channel E.

In the long time limit the system may reach a steady-state
where I1 no longer changes, so �I1 = 0. This does not
necessarily mean G1 = L1 = 0, however. It might simply
stem from a mutual balancing of gains and losses. That is,
G1 = L1 , 0. We define an informational steady-state (ISS)
as the asymptotic state for which

�IISS = 0 but GISS = LISS , 0. (20)

In an ISS, information is continuously acquired, but this is
balanced by the noise that is introduced by the measurement.
Crucially, the ISS does not mean that ⇢Xt |⇣t is no longer chang-
ing. This state is stochastic and thus continues to evolve in-
definitely. Instead, what become stationary is the stochastic
distribution of states in state-space [51].

C. Unconditional 2nd law

Next we turn to the thermodynamics. The 2nd law of ther-
modynamics characterize the degree of irreversibility of a cer-
tain process and can be formulated in purely information-
theoretic terms. This allows it to be extended beyond standard
thermal environments, and also to avoid di�culties associated
with the definition of heat and work, which can be quite prob-
lematic in the quantum regime [28].

At each collision, the entropy of the system will change
from S (Xt) to S (Xt+1). This change, however, may be either
positive or negative. The goal of the 2nd law is to identify
a contribution to this change associated with the flow of en-
tropy between system and ancilla, and another representing
the entropy that was irreversibly produced in the process. The
separation thus takes the form
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Each term S (⇢Xt |⇣t ) quantifies the information for one specific
realization ⇣t, and S (Xt |⇣t) is then an average over all trajec-
tories. Note also that this is not the quantum conditional en-
tropy, a quantity which can be negative. Here, since we are
conditioning on classical outcomes, S (Xt |⇣t) is always strictly
non-negative. In this paper all conditional entropies will be of
this form.

The mismatch between S (Xt) and S (Xt |⇣t) is given by the
Holevo information (or Holevo quantity) [49]

I(Xt :⇣t) := S (Xt) � S (Xt |⇣t). (12)

It quantifies the information about X contained in the classical
outcomes ⇣t. Its interpretation becomes clearer by casting it as

I(Xt :⇣t) =
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⇣t

P(⇣t) D
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⇢Xt |⇣t ||⇢Xt
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where D(⇢||�) = tr(⇢ ln ⇢ � ⇢ ln�) is the quantum relative en-
tropy. Therefore, I(Xt :⇣t) is the weighted average of the “dis-
tance” between ⇢Xt |⇣t and ⇢Xt .

The Holevo information reflects the integrated information,
acquired about the system, up to time t. This is di↵erent from
the small increment that is obtained from a single outcome z,
at each step. In order to quantify such di↵erential information
gain, the natural quantity is the conditional Holevo informa-
tion

Gt := Ic(Xt :zt |⇣t�1) = I(Xt :⇣t) � I(Xt :⇣t�1) (14)

= S (Xt |⇣t�1) � S (Xt |⇣t).

It describes the correlations between Xt and the latest available
outcome zt, given the past outcomes ⇣t�1 = (z1, . . . , zt�1). The
first term involves the state ⇢Xt |⇣t�1 , which stands for the state of
the system at time t, conditioned on all measurement records,
except the last one. In symbols, it can thus be written as

⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 ), (15)

where E is the unconditional map in Eq. (2). This there-
fore a↵ords a beautiful interpretation to Eq. (14). Starting
at ⇢Xt�1 |⇣t�1 , one compares two paths: a conditional evolution
taking ⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t and a unconditional evolution taking
⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t�1 . Eq. (14) measures the gain in information
of the latter, compared to the former.

B. Information rates and informational steady-states

Eq. (12) is always non-negative. However, this does not
imply that it will necessarily increase with time. In fact, the
information rate

�It := I(Xt :⇣t) � I(Xt�1 :⇣t�1) (16)

can take any sign. This reflects the trade-o↵ between the gain
in information and the measurement backaction. A natural
question is then whether it is possible to split �It as the dif-
ference between two strictly non-negative terms, the first nat-
urally identified with the di↵erential gain of information (14),

and the second to the di↵erential information loss. That is,
whether a splitting of the form

�It = Gt � Lt, (17)

would lead to the identification of a loss term Lt which is
strictly non-negative. As we will see in what follows, the an-
swer to this question is in the positive.

To find a formula for Lt we simply insert the first line
of (14) into Eq. (16) to find

Lt := I(Xt�1 :⇣t�1) � I(Xt :⇣t�1). (18)

This is already clearly interpretable as a loss term, as it mea-
sures how information is degraded by the map in Eq. (15).
Indeed, we can show that it is strictly non-negative. To do
that, we use Eq. (13) to write Lt as
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But ⇢Xt = E(⇢Xt�1 ) [Eq. (2)] and ⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 )
[Eq. (15)]. Together with the data processing inequality [50],
this is enough to ascertain the non-negativity of Lt for any
quantum channel E.

In the long time limit the system may reach a steady-state
where I1 no longer changes, so �I1 = 0. This does not
necessarily mean G1 = L1 = 0, however. It might simply
stem from a mutual balancing of gains and losses. That is,
G1 = L1 , 0. We define an informational steady-state (ISS)
as the asymptotic state for which

�IISS = 0 but GISS = LISS , 0. (20)

In an ISS, information is continuously acquired, but this is
balanced by the noise that is introduced by the measurement.
Crucially, the ISS does not mean that ⇢Xt |⇣t is no longer chang-
ing. This state is stochastic and thus continues to evolve in-
definitely. Instead, what become stationary is the stochastic
distribution of states in state-space [51].

C. Unconditional 2nd law

Next we turn to the thermodynamics. The 2nd law of ther-
modynamics characterize the degree of irreversibility of a cer-
tain process and can be formulated in purely information-
theoretic terms. This allows it to be extended beyond standard
thermal environments, and also to avoid di�culties associated
with the definition of heat and work, which can be quite prob-
lematic in the quantum regime [28].

At each collision, the entropy of the system will change
from S (Xt) to S (Xt+1). This change, however, may be either
positive or negative. The goal of the 2nd law is to identify
a contribution to this change associated with the flow of en-
tropy between system and ancilla, and another representing
the entropy that was irreversibly produced in the process. The
separation thus takes the form
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Each term S (⇢Xt |⇣t ) quantifies the information for one specific
realization ⇣t, and S (Xt |⇣t) is then an average over all trajec-
tories. Note also that this is not the quantum conditional en-
tropy, a quantity which can be negative. Here, since we are
conditioning on classical outcomes, S (Xt |⇣t) is always strictly
non-negative. In this paper all conditional entropies will be of
this form.

The mismatch between S (Xt) and S (Xt |⇣t) is given by the
Holevo information (or Holevo quantity) [49]

I(Xt :⇣t) := S (Xt) � S (Xt |⇣t). (12)

It quantifies the information about X contained in the classical
outcomes ⇣t. Its interpretation becomes clearer by casting it as
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where D(⇢||�) = tr(⇢ ln ⇢ � ⇢ ln�) is the quantum relative en-
tropy. Therefore, I(Xt :⇣t) is the weighted average of the “dis-
tance” between ⇢Xt |⇣t and ⇢Xt .

The Holevo information reflects the integrated information,
acquired about the system, up to time t. This is di↵erent from
the small increment that is obtained from a single outcome z,
at each step. In order to quantify such di↵erential information
gain, the natural quantity is the conditional Holevo informa-
tion

Gt := Ic(Xt :zt |⇣t�1) = I(Xt :⇣t) � I(Xt :⇣t�1) (14)

= S (Xt |⇣t�1) � S (Xt |⇣t).

It describes the correlations between Xt and the latest available
outcome zt, given the past outcomes ⇣t�1 = (z1, . . . , zt�1). The
first term involves the state ⇢Xt |⇣t�1 , which stands for the state of
the system at time t, conditioned on all measurement records,
except the last one. In symbols, it can thus be written as

⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 ), (15)

where E is the unconditional map in Eq. (2). This there-
fore a↵ords a beautiful interpretation to Eq. (14). Starting
at ⇢Xt�1 |⇣t�1 , one compares two paths: a conditional evolution
taking ⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t and a unconditional evolution taking
⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t�1 . Eq. (14) measures the gain in information
of the latter, compared to the former.

B. Information rates and informational steady-states

Eq. (12) is always non-negative. However, this does not
imply that it will necessarily increase with time. In fact, the
information rate

�It := I(Xt :⇣t) � I(Xt�1 :⇣t�1) (16)

can take any sign. This reflects the trade-o↵ between the gain
in information and the measurement backaction. A natural
question is then whether it is possible to split �It as the dif-
ference between two strictly non-negative terms, the first nat-
urally identified with the di↵erential gain of information (14),

and the second to the di↵erential information loss. That is,
whether a splitting of the form

�It = Gt � Lt, (17)

would lead to the identification of a loss term Lt which is
strictly non-negative. As we will see in what follows, the an-
swer to this question is in the positive.

To find a formula for Lt we simply insert the first line
of (14) into Eq. (16) to find

Lt := I(Xt�1 :⇣t�1) � I(Xt :⇣t�1). (18)

This is already clearly interpretable as a loss term, as it mea-
sures how information is degraded by the map in Eq. (15).
Indeed, we can show that it is strictly non-negative. To do
that, we use Eq. (13) to write Lt as
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But ⇢Xt = E(⇢Xt�1 ) [Eq. (2)] and ⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 )
[Eq. (15)]. Together with the data processing inequality [50],
this is enough to ascertain the non-negativity of Lt for any
quantum channel E.

In the long time limit the system may reach a steady-state
where I1 no longer changes, so �I1 = 0. This does not
necessarily mean G1 = L1 = 0, however. It might simply
stem from a mutual balancing of gains and losses. That is,
G1 = L1 , 0. We define an informational steady-state (ISS)
as the asymptotic state for which

�IISS = 0 but GISS = LISS , 0. (20)

In an ISS, information is continuously acquired, but this is
balanced by the noise that is introduced by the measurement.
Crucially, the ISS does not mean that ⇢Xt |⇣t is no longer chang-
ing. This state is stochastic and thus continues to evolve in-
definitely. Instead, what become stationary is the stochastic
distribution of states in state-space [51].

C. Unconditional 2nd law

Next we turn to the thermodynamics. The 2nd law of ther-
modynamics characterize the degree of irreversibility of a cer-
tain process and can be formulated in purely information-
theoretic terms. This allows it to be extended beyond standard
thermal environments, and also to avoid di�culties associated
with the definition of heat and work, which can be quite prob-
lematic in the quantum regime [28].

At each collision, the entropy of the system will change
from S (Xt) to S (Xt+1). This change, however, may be either
positive or negative. The goal of the 2nd law is to identify
a contribution to this change associated with the flow of en-
tropy between system and ancilla, and another representing
the entropy that was irreversibly produced in the process. The
separation thus takes the form

�⌃u
t = S (Xt) � S (Xt�1) + ��u

t , (21)
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Each term S (⇢Xt |⇣t ) quantifies the information for one specific
realization ⇣t, and S (Xt |⇣t) is then an average over all trajec-
tories. Note also that this is not the quantum conditional en-
tropy, a quantity which can be negative. Here, since we are
conditioning on classical outcomes, S (Xt |⇣t) is always strictly
non-negative. In this paper all conditional entropies will be of
this form.

The mismatch between S (Xt) and S (Xt |⇣t) is given by the
Holevo information (or Holevo quantity) [49]

I(Xt :⇣t) := S (Xt) � S (Xt |⇣t). (12)

It quantifies the information about X contained in the classical
outcomes ⇣t. Its interpretation becomes clearer by casting it as

I(Xt :⇣t) =
X

⇣t

P(⇣t) D
�
⇢Xt |⇣t ||⇢Xt

�
> 0, (13)

where D(⇢||�) = tr(⇢ ln ⇢ � ⇢ ln�) is the quantum relative en-
tropy. Therefore, I(Xt :⇣t) is the weighted average of the “dis-
tance” between ⇢Xt |⇣t and ⇢Xt .

The Holevo information reflects the integrated information,
acquired about the system, up to time t. This is di↵erent from
the small increment that is obtained from a single outcome z,
at each step. In order to quantify such di↵erential information
gain, the natural quantity is the conditional Holevo informa-
tion

Gt := Ic(Xt :zt |⇣t�1) = I(Xt :⇣t) � I(Xt :⇣t�1) (14)

= S (Xt |⇣t�1) � S (Xt |⇣t).

It describes the correlations between Xt and the latest available
outcome zt, given the past outcomes ⇣t�1 = (z1, . . . , zt�1). The
first term involves the state ⇢Xt |⇣t�1 , which stands for the state of
the system at time t, conditioned on all measurement records,
except the last one. In symbols, it can thus be written as

⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 ), (15)

where E is the unconditional map in Eq. (2). This there-
fore a↵ords a beautiful interpretation to Eq. (14). Starting
at ⇢Xt�1 |⇣t�1 , one compares two paths: a conditional evolution
taking ⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t and a unconditional evolution taking
⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t�1 . Eq. (14) measures the gain in information
of the latter, compared to the former.

B. Information rates and informational steady-states

Eq. (12) is always non-negative. However, this does not
imply that it will necessarily increase with time. In fact, the
information rate

�It := I(Xt :⇣t) � I(Xt�1 :⇣t�1) (16)

can take any sign. This reflects the trade-o↵ between the gain
in information and the measurement backaction. A natural
question is then whether it is possible to split �It as the dif-
ference between two strictly non-negative terms, the first nat-
urally identified with the di↵erential gain of information (14),

and the second to the di↵erential information loss. That is,
whether a splitting of the form

�It = Gt � Lt, (17)

would lead to the identification of a loss term Lt which is
strictly non-negative. As we will see in what follows, the an-
swer to this question is in the positive.

To find a formula for Lt we simply insert the first line
of (14) into Eq. (16) to find

Lt := I(Xt�1 :⇣t�1) � I(Xt :⇣t�1). (18)

This is already clearly interpretable as a loss term, as it mea-
sures how information is degraded by the map in Eq. (15).
Indeed, we can show that it is strictly non-negative. To do
that, we use Eq. (13) to write Lt as

Lt =
X

⇣t�1

P(⇣t�1)
h
D(⇢Xt�1 |⇣t�1 ||⇢Xt�1 ) � D(⇢Xt |⇣t�1 ||⇢Xt )

i
. (19)

But ⇢Xt = E(⇢Xt�1 ) [Eq. (2)] and ⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 )
[Eq. (15)]. Together with the data processing inequality [50],
this is enough to ascertain the non-negativity of Lt for any
quantum channel E.

In the long time limit the system may reach a steady-state
where I1 no longer changes, so �I1 = 0. This does not
necessarily mean G1 = L1 = 0, however. It might simply
stem from a mutual balancing of gains and losses. That is,
G1 = L1 , 0. We define an informational steady-state (ISS)
as the asymptotic state for which

�IISS = 0 but GISS = LISS , 0. (20)

In an ISS, information is continuously acquired, but this is
balanced by the noise that is introduced by the measurement.
Crucially, the ISS does not mean that ⇢Xt |⇣t is no longer chang-
ing. This state is stochastic and thus continues to evolve in-
definitely. Instead, what become stationary is the stochastic
distribution of states in state-space [51].

C. Unconditional 2nd law

Next we turn to the thermodynamics. The 2nd law of ther-
modynamics characterize the degree of irreversibility of a cer-
tain process and can be formulated in purely information-
theoretic terms. This allows it to be extended beyond standard
thermal environments, and also to avoid di�culties associated
with the definition of heat and work, which can be quite prob-
lematic in the quantum regime [28].

At each collision, the entropy of the system will change
from S (Xt) to S (Xt+1). This change, however, may be either
positive or negative. The goal of the 2nd law is to identify
a contribution to this change associated with the flow of en-
tropy between system and ancilla, and another representing
the entropy that was irreversibly produced in the process. The
separation thus takes the form
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realization ⇣t, and S (Xt |⇣t) is then an average over all trajec-
tories. Note also that this is not the quantum conditional en-
tropy, a quantity which can be negative. Here, since we are
conditioning on classical outcomes, S (Xt |⇣t) is always strictly
non-negative. In this paper all conditional entropies will be of
this form.

The mismatch between S (Xt) and S (Xt |⇣t) is given by the
Holevo information (or Holevo quantity) [49]

I(Xt :⇣t) := S (Xt) � S (Xt |⇣t). (12)

It quantifies the information about X contained in the classical
outcomes ⇣t. Its interpretation becomes clearer by casting it as

I(Xt :⇣t) =
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where D(⇢||�) = tr(⇢ ln ⇢ � ⇢ ln�) is the quantum relative en-
tropy. Therefore, I(Xt :⇣t) is the weighted average of the “dis-
tance” between ⇢Xt |⇣t and ⇢Xt .

The Holevo information reflects the integrated information,
acquired about the system, up to time t. This is di↵erent from
the small increment that is obtained from a single outcome z,
at each step. In order to quantify such di↵erential information
gain, the natural quantity is the conditional Holevo informa-
tion

Gt := Ic(Xt :zt |⇣t�1) = I(Xt :⇣t) � I(Xt :⇣t�1) (14)

= S (Xt |⇣t�1) � S (Xt |⇣t).

It describes the correlations between Xt and the latest available
outcome zt, given the past outcomes ⇣t�1 = (z1, . . . , zt�1). The
first term involves the state ⇢Xt |⇣t�1 , which stands for the state of
the system at time t, conditioned on all measurement records,
except the last one. In symbols, it can thus be written as

⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 ), (15)

where E is the unconditional map in Eq. (2). This there-
fore a↵ords a beautiful interpretation to Eq. (14). Starting
at ⇢Xt�1 |⇣t�1 , one compares two paths: a conditional evolution
taking ⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t and a unconditional evolution taking
⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t�1 . Eq. (14) measures the gain in information
of the latter, compared to the former.

B. Information rates and informational steady-states

Eq. (12) is always non-negative. However, this does not
imply that it will necessarily increase with time. In fact, the
information rate

�It := I(Xt :⇣t) � I(Xt�1 :⇣t�1) (16)

can take any sign. This reflects the trade-o↵ between the gain
in information and the measurement backaction. A natural
question is then whether it is possible to split �It as the dif-
ference between two strictly non-negative terms, the first nat-
urally identified with the di↵erential gain of information (14),

and the second to the di↵erential information loss. That is,
whether a splitting of the form

�It = Gt � Lt, (17)

would lead to the identification of a loss term Lt which is
strictly non-negative. As we will see in what follows, the an-
swer to this question is in the positive.

To find a formula for Lt we simply insert the first line
of (14) into Eq. (16) to find

Lt := I(Xt�1 :⇣t�1) � I(Xt :⇣t�1). (18)

This is already clearly interpretable as a loss term, as it mea-
sures how information is degraded by the map in Eq. (15).
Indeed, we can show that it is strictly non-negative. To do
that, we use Eq. (13) to write Lt as

Lt =
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i
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But ⇢Xt = E(⇢Xt�1 ) [Eq. (2)] and ⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 )
[Eq. (15)]. Together with the data processing inequality [50],
this is enough to ascertain the non-negativity of Lt for any
quantum channel E.

In the long time limit the system may reach a steady-state
where I1 no longer changes, so �I1 = 0. This does not
necessarily mean G1 = L1 = 0, however. It might simply
stem from a mutual balancing of gains and losses. That is,
G1 = L1 , 0. We define an informational steady-state (ISS)
as the asymptotic state for which

�IISS = 0 but GISS = LISS , 0. (20)

In an ISS, information is continuously acquired, but this is
balanced by the noise that is introduced by the measurement.
Crucially, the ISS does not mean that ⇢Xt |⇣t is no longer chang-
ing. This state is stochastic and thus continues to evolve in-
definitely. Instead, what become stationary is the stochastic
distribution of states in state-space [51].

C. Unconditional 2nd law

Next we turn to the thermodynamics. The 2nd law of ther-
modynamics characterize the degree of irreversibility of a cer-
tain process and can be formulated in purely information-
theoretic terms. This allows it to be extended beyond standard
thermal environments, and also to avoid di�culties associated
with the definition of heat and work, which can be quite prob-
lematic in the quantum regime [28].

At each collision, the entropy of the system will change
from S (Xt) to S (Xt+1). This change, however, may be either
positive or negative. The goal of the 2nd law is to identify
a contribution to this change associated with the flow of en-
tropy between system and ancilla, and another representing
the entropy that was irreversibly produced in the process. The
separation thus takes the form

�⌃u
t = S (Xt) � S (Xt�1) + ��u

t , (21)
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Each term S (⇢Xt |⇣t ) quantifies the information for one specific
realization ⇣t, and S (Xt |⇣t) is then an average over all trajec-
tories. Note also that this is not the quantum conditional en-
tropy, a quantity which can be negative. Here, since we are
conditioning on classical outcomes, S (Xt |⇣t) is always strictly
non-negative. In this paper all conditional entropies will be of
this form.

The mismatch between S (Xt) and S (Xt |⇣t) is given by the
Holevo information (or Holevo quantity) [49]
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where D(⇢||�) = tr(⇢ ln ⇢ � ⇢ ln�) is the quantum relative en-
tropy. Therefore, I(Xt :⇣t) is the weighted average of the “dis-
tance” between ⇢Xt |⇣t and ⇢Xt .

The Holevo information reflects the integrated information,
acquired about the system, up to time t. This is di↵erent from
the small increment that is obtained from a single outcome z,
at each step. In order to quantify such di↵erential information
gain, the natural quantity is the conditional Holevo informa-
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Gt := Ic(Xt :zt |⇣t�1) = I(Xt :⇣t) � I(Xt :⇣t�1) (14)

= S (Xt |⇣t�1) � S (Xt |⇣t).

It describes the correlations between Xt and the latest available
outcome zt, given the past outcomes ⇣t�1 = (z1, . . . , zt�1). The
first term involves the state ⇢Xt |⇣t�1 , which stands for the state of
the system at time t, conditioned on all measurement records,
except the last one. In symbols, it can thus be written as

⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 ), (15)

where E is the unconditional map in Eq. (2). This there-
fore a↵ords a beautiful interpretation to Eq. (14). Starting
at ⇢Xt�1 |⇣t�1 , one compares two paths: a conditional evolution
taking ⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t and a unconditional evolution taking
⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t�1 . Eq. (14) measures the gain in information
of the latter, compared to the former.

B. Information rates and informational steady-states

Eq. (12) is always non-negative. However, this does not
imply that it will necessarily increase with time. In fact, the
information rate

�It := I(Xt :⇣t) � I(Xt�1 :⇣t�1) (16)

can take any sign. This reflects the trade-o↵ between the gain
in information and the measurement backaction. A natural
question is then whether it is possible to split �It as the dif-
ference between two strictly non-negative terms, the first nat-
urally identified with the di↵erential gain of information (14),

and the second to the di↵erential information loss. That is,
whether a splitting of the form

�It = Gt � Lt, (17)

would lead to the identification of a loss term Lt which is
strictly non-negative. As we will see in what follows, the an-
swer to this question is in the positive.

To find a formula for Lt we simply insert the first line
of (14) into Eq. (16) to find

Lt := I(Xt�1 :⇣t�1) � I(Xt :⇣t�1). (18)

This is already clearly interpretable as a loss term, as it mea-
sures how information is degraded by the map in Eq. (15).
Indeed, we can show that it is strictly non-negative. To do
that, we use Eq. (13) to write Lt as

Lt =
X

⇣t�1

P(⇣t�1)
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i
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But ⇢Xt = E(⇢Xt�1 ) [Eq. (2)] and ⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 )
[Eq. (15)]. Together with the data processing inequality [50],
this is enough to ascertain the non-negativity of Lt for any
quantum channel E.

In the long time limit the system may reach a steady-state
where I1 no longer changes, so �I1 = 0. This does not
necessarily mean G1 = L1 = 0, however. It might simply
stem from a mutual balancing of gains and losses. That is,
G1 = L1 , 0. We define an informational steady-state (ISS)
as the asymptotic state for which

�IISS = 0 but GISS = LISS , 0. (20)

In an ISS, information is continuously acquired, but this is
balanced by the noise that is introduced by the measurement.
Crucially, the ISS does not mean that ⇢Xt |⇣t is no longer chang-
ing. This state is stochastic and thus continues to evolve in-
definitely. Instead, what become stationary is the stochastic
distribution of states in state-space [51].

C. Unconditional 2nd law

Next we turn to the thermodynamics. The 2nd law of ther-
modynamics characterize the degree of irreversibility of a cer-
tain process and can be formulated in purely information-
theoretic terms. This allows it to be extended beyond standard
thermal environments, and also to avoid di�culties associated
with the definition of heat and work, which can be quite prob-
lematic in the quantum regime [28].

At each collision, the entropy of the system will change
from S (Xt) to S (Xt+1). This change, however, may be either
positive or negative. The goal of the 2nd law is to identify
a contribution to this change associated with the flow of en-
tropy between system and ancilla, and another representing
the entropy that was irreversibly produced in the process. The
separation thus takes the form

�⌃u
t = S (Xt) � S (Xt�1) + ��u

t , (21)

5

where ��u
t is the unconditional flow rate of entropy from the

system to the ancilla in each collision, and �⌃u
t is the uncon-

ditional rate of entropy produced in the process. The 2nd law
is summarized by the statement that we should have �⌃u

t � 0.
Eq. (21) is merely a definition, however. The goal is precisely
to determine the actual forms of ��u

t and �⌃u
t .

In standard thermal processes, this is usually accomplished
by postulating that the entropy flow ��u

t should be linked with
the heat flow Q̇t entering the ancillae through Clausius’ ex-
pression [52] ��u

t = �Q̇t, where � is the inverse temperature
of the thermal state the ancillae are in. By fixing ��u

t we then
also fix �⌃u

t . This, however, only holds for thermal ancillae,
thus restricting the range of applicability of the formalism.

Instead, we approach the problem using the framework de-
veloped in Ref. [53] (see also [40, 54]), which formulates the
entropy production rate in information theoretic terms, as

�⌃u
t = I(Xt :Y 0t ) + D(Y 0t ||Yt) > 0, (22)

where I(Xt : Y 0t ) = S (⇢Xt ) + S (⇢0Yt
) � S (⇢XtY 0t ) is the quantum

mutual information between system and ancilla after Eq. (1)
and D(Y 0t ||Yt) = D(⇢Y 0t ||⇢Yt ) is the relative entropy between the
state of the ancilla before and after the collision. The first term
thus accounts for the correlations that built up between system
and ancilla, while the second measures the amount by which
the ancillae were pushed away from their initial states. Thus,
from the perspective of the system, irreversibility stems from
tracing over the ancillae after the interaction in such a way
that all quantities related either to the local state of the ancilla,
or to their global correlations, are irretrievable [54].

As the global map in Eq. (1) is unitary, and the system and
ancillae are always uncorrelated before a collision, it follows
that

S (⇢XtY 0t ) = S (⇢Xt�1Yt ) = S (⇢Xt�1 ) + S (⇢Yt ). (23)

Hence, the mutual information may also be written as

I(Xt :Y 0t ) = S (Xt) + S (Y 0t ) � S (Xt�1) � S (Yt). (24)

Plugging this in Eq. (22) and comparing with Eq. (21) then
allows us to identify the entropy flux as

��u
t = S (Y 0t )� S (Yt)+D(Y 0t ||Yt) = tr

n
(⇢Yt � ⇢Y 0t ) ln ⇢Yt

o
. (25)

The entropy flux is seen to depend solely on the degrees of
freedom of the ancilla. Although Eq. (25) is general and holds
for arbitrary states of the ancillae, it reduces to �Q̇, as in the
Clausius expression, if ⇢Y is thermal.

Another very important property of the entropy flux is ad-
ditivity. What we call an “ancilla” may itself be a composed
system consisting of multiple elementary units. In fact, as we
will illustrate in Sec. IV, this can give rise to interesting situ-
ations. Suppose that Yt = (Yt1,Yt2, . . . ,YtN) and that the units
are prepared in a globally product state ⇢Yt =

NN
j=1 ⇢Yt j . Af-

ter colliding with the system, the state ⇢Y 0t might no longer be
uncorrelated, in general. Despite this, owing to the structure
of Eq. (25), we would have

��u
t =

NX

j=1

��u
t j =

NX

j=1

tr
n
(⇢Y 0t j
� ⇢Yt j ) ln ⇢Yt j

o
, (26)

where ⇢Y 0t j
is the post-collision reduced state of the jth unit of

the ancilla. This property is quite important, as it allows one to
compute the flux associated to each dissipation channel acting
on the system.

D. Conditional 2nd law

Eqs. (21), (22) and (25) specify the thermodynamics of the
unconditional trajectories ⇢Xt , when no information about the
ancillae is recorded. We now ask the same question for the
conditional trajectories ⇢Xt |⇣t . In this case, the relevant en-
tropy is the quantum-classical conditional entropy S (Xt |⇣t) in
Eq. (11). Thus, we search for a splitting analogous to Eq. (21),
but of the form

�⌃c
t = S (Xt |⇣t) � S (Xt�1|⇣t�1) + ��c

t , (27)

where �⌃c
t and ��c

t are the conditional counterparts of the un-
conditional quantities used in Sec. III C. The identification of
suitable forms for such quantities is the scope of this Section.

We adopt an approach similar to that used in Refs. [20, 55],
which consists in defining the conditional flux rate as the nat-
ural extension of Eq. (25) to the conditional case. That is, as
��c

t refers to a specific collision, it should depend only on
quantities pertaining to the specific ancilla Yt, thus being of
the form

��c
t = S (Y 0t |zt) � S (Yt) +

X

zt

P(zt)D
�
⇢Y 0t |zt

���
���⇢Yt

�
, (28)

where ⇢Y 0t |zt = (Mzt⇢Y 0t M†zt )/P(zt) is the final state of the an-
cilla given outcome zt and P(zt) = tr

�
Mzt⇢Y 0t M†zt ) [cf. Eq. (3)].

Moreover, S (Y 0t |zt) is defined similarly to Eq. (11). Note how
the causal structure of the model implies that the flux should
be conditioned only to outcome zt, instead of the entire mea-
surement record ⇣t.

By defining the reconstructed state of the ancilla after the
measurement ⇢̃Y 0t =

P
zt P(zt)⇢Y 0t |zt =

P
zt Mzt⇢Y 0t M†zt , Eq. (28)

can be recast into the form

��c
t = tr

n
(⇢Yt � ⇢̃Y 0t ) ln ⇢Yt

o
, (29)

which showcases the potential di↵erence between conditional
and unconditional fluxes. Depending on the measurement
strategy {Mz} being adopted, it is reasonable to expect that
⇢Y 0t , ⇢̃Y 0t , thus resulting in ��u

t , ��c
t . This reflects the

potentially invasive nature of the measurements on the an-
cilla. However, it should be noted that this is an extrinsic
e↵ect, related to the specific choice of measurement by the
observer, and fully unrelated to the thermodynamics of the
system-ancilla interactions.

We will henceforth assume that the measurement strategy
is such that

tr{⇢̃Y 0t ln ⇢Yt } = tr{⇢Y 0t ln ⇢Yt }. (30)

That is, it that does not change the population of Y 0t in the
eigenbasis of the original state ⇢Yt . This can be accomplished,
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FIG. 1. (a) A typical method for continuously monitoring a system is to couple it to an optical cavity and measure the photons leaking out.
(b) In a collisional model picture, the monitoring is introduced instead through a series of sequential collisions between the system X and
independent ancillae Yt, which are subjected to measurement after each collision. (c) Diagrammatic representation of the model. The system
is described stroboscopically (discrete time) by a state ⇢Xt . At each instant of time, it interacts with an independent ancilla, prepared in state
⇢Y , according to the map in Eq. (1). Afterwards, the ancillae are measured, as described by generalized measurement operators {Mz}, which
produce a classical (and random) outcome zt. (d) As time progresses, one builds up a measurement record ⇣t = (z1, . . . , zt), which contains all
the information acquired about X up to time t.

As the measurements are performed only on the ancillae, there
is never a direct backaction on the system, which is expressed
mathematically by

X

⇣t

P(⇣t)⇢Xt |⇣t = ⇢Xt (7)

for any choice of generalized measurements {Mz}. That is,
the average of ⇢Xt |⇣t over all outcomes ⇣t yields back the un-
conditional state ⇢Xt . Thus, while there may be a conditional
backaction, unconditionally the measurement is non-invasive.

The normalization factor P(⇣t) in Eq. (6) introduces a un-
wanted complication, as it forbids us to write ⇢Xt |⇣t as a map
acting on ⇢Xt�1 |⇣t�1 . This can be resolved, however, if we work
with unnormalized states. We define the completely positive,
trace non-preserving map

Ez(⇢X) = trY
n
MzU(⇢X ⌦ ⇢Y )U†M†z

o
, (8)

which is indexed by the possible outcomes z of the measure-
ments. Instead of working with ⇢Xt |⇣t in Eq. (6), we consider
the unnormalized states %Xt |⇣t , defined as the sequence gener-
ated by the map

%Xt |⇣t = Ezt

�
%Xt�1 |⇣t�1

�
(9)

with initial condition %X0 |⇣0 = ⇢X0 . One may readily verify that

trX %Xt |⇣t = trX
n
Ezt � . . . � Ez1 (⇢X0 )

o
= P(⇣t). (10)

The states %Xt |⇣t therefore contain the outcome distribution
P(⇣t) at any given time. And the normalized state in (6) is
recovered as ⇢Xt |⇣t = %Xt |⇣t/P(⇣t).

It is useful to keep in mind the interpretation of a CM2 as
a Hidden Markov model [9, 47, 48]. The system evolution
is Markovian, but this is hidden from the observer who is par-
tially ignorant about its dynamics: access to X is only possible
through the classical outcomes ⇣t. In the language of Bayesian
networks, the key issue entailed by our framework is thus
about the predictions that can be made on the state of the hid-
den layer X given the information available through the visible
layer of the outcomes ⇣t only. This highlights the nice inter-
play between quantum and classical features, present in these
models: The evolution of the system is quantum but infor-
mation is only accessed through classical data. We have also
found it illuminating to understand what would be the clas-
sical version of a CM2, as this allows us to relate our frame-
work directly with the classical formalism of Ito, Sagawa and
Ueda [9, 10]. This is addressed in Appendix A, where we also
discuss the conditions for a CM2 to be incoherent.

III. INFORMATION AND THERMODYNAMICS

A. Quantum-classical information

The information content in the unconditional state ⇢Xt can
be quantified by the von Neumann entropy S (Xt) ⌘ S (⇢Xt ) =
� tr ⇢Xt ln ⇢Xt . Similarly, the information in the conditional
state ⇢Xt |⇣t (properly normalized) is quantified by quantum-
classical conditional entropy

S (Xt |⇣t) =
X

⇣t

P(⇣t)S (⇢Xt |⇣t ). (11)

steady state
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for instance, by measuring in the same basis into which the
state of the ancillae is prepared. We can then reach the impor-
tant conclusion that

��c
t = ��

u
t . (31)

This result is intuitive: Conditioning on the outcome is a sub-
jective matter, related to whether or not we read out the out-
comes of the experiment. It should therefore have no e↵ect on
how much entropy flows to the ancillae. Similar ideas were
also used in many contexts [10, 12, 18, 55]. However, these
studies were concerned with the heat flux, which coincides
with the entropy flux for thermal baths. Here we show that
this is a general property, valid for any bath, provided we re-
strict to the special class of measurements characterized by
Eq. (30).

Under these conditions, comparing Eqs. (27) and (21), and
reminding of the information rate in Eq. (16), we find

�⌃c
t = �⌃

u
t � �It. (32)

This is a key result of our framework: It shows how the act
of conditioning the dynamics on the measurement outcome
changes the entropy production by a quantity associated with
the change in the Holevo information. Hence, it serves as
a bridge between the information rates and thermodynamics.
In particular, in an ISS, �IISS = 0 and so �⌃c

ISS = �⌃
u
ISS,

although ⇢Xt and ⇢Xt |⇣t are in general di↵erent.

E. Properties of the conditional entropy production

We now move on to discuss the main properties of the con-
ditional entropy production. The quantities �⌃u

t and �⌃c
t refer

to the incremental entropy production in a single collision.
Conversely, it is also of interest to analyze the integrated en-
tropy production

⌃↵t =

tX

⌧=1

�⌃↵⌧ , ↵ = u, c. (33)

Since �It in Eq. (16) is an exact di↵erential, when we sum
Eq. (32) up to time t, the terms in �I⌧ successively cancel,
leaving only

⌃c
t = ⌃

u
t � I(Xt :⇣t). (34)

The integrated entropy production up to time t therefore de-
pends only on the net information I(Xt : ⇣t). Since I(Xt : ⇣t) >
0, it then follows that

⌃u
t > ⌃

c
t . (35)

Therefore, conditioning makes the process more reversible.
This happens because we only carry out measurements in the
environment, so that there is never a direct backaction in the
system. A stronger bound can also be obtained by using the
fact that Lt > 0, which then leads to

⌃u � ⌃c >
tX

⌧=1

G⌧. (36)

The reduction in entropy production is thus at least the total
information gain.

Returning now to the entropy production rate in each col-
lision, in Appendix B we provide a proof of the following
relation

�⌃c
t > D(Y 0t ||Yt) + I(Y 0t :⇣t) > 0, (37)

where D(Y 0t ||Yt), is the backaction caused in the ancillary state
due to its collision with the system, while I(Y 0t :⇣t�1) quantifies
the amount of information gained about the ancilla through the
measurement strategy. This is one of the overarching conclu-
sions of our work, bearing remarkable consequences. On the
one hand, it proves that the 2nd law continues to be satisfied
in the conditional case. On the other hand, it provides a non-
trivial lower bound to the conditional entropy production rate
in terms of the changes that take place in the ancillae only.
It should also be noted that, the first inequality in Eq. (37) is
saturated by processes where the measurement extracts all the
information available.

IV. SIMPLE QUBIT MODELS

We now apply the ideas of the previous sections to sim-
ple models of CM2s, aimed at illustrating their overarching
features while keeping the level of technical details to a min-
imum, so as to emphasize the physical implications of the
framework illustrated so far.

We will focus on the case in which both the system and
the elementary units of the ancilla are qubits. Despite their
simplicity, such situations have far-reaching applications. For
instance, in Ref. [45] it was shown how quantum optical
stochastic master equations naturally emerge from modeling
opticals baths in terms of e↵ective qubits in a collisional
model. Moreover, suitably chosen measurement stategies
{Mz} implemented on qubits allow also to simulate widely
used measurement schemes, such as photo-detection, ho-
modyne and heterodyne measurements. Finally, by tuning
the initial state of the qubits, one can also simulate out-
of-equilibrium environments, such as squeezed baths. In
Ref. [56], we complement the study reported here by address-
ing explicitly the case of continuous-variable systems.

Recall that a CM2 is completely specified by setting
{⇢Y ,U,Mz}. The unconditional dynamics is governed by the
map E defined in Eq. (2), which can be simulated directly
with very low computational cost. The conditional dynam-
ics, on the other hand, is governed by the map Ez in Eqs. (8)
and (9), which we simulate using stochastic trajectories.

A. Single-qubit ancilla

We begin by studying the case where the system inter-
acts with single-qubit ancillae prepared in the thermal state
⇢Y = f |0ih0|Y + (1 � f )|1ih1|Y , where f 2 [0, 1] and |0i , |1i
is the computational basis — i.e., the eigenstates of the Pauli-
z operator �z

Y = |1ih1|Y � |0ih0|Y . The collisions are mod-
eled by a partial SWAP gate U = e�ig(�+X�

�
Y+�

�
X�
+
Y ), where
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Each term S (⇢Xt |⇣t ) quantifies the information for one specific
realization ⇣t, and S (Xt |⇣t) is then an average over all trajec-
tories. Note also that this is not the quantum conditional en-
tropy, a quantity which can be negative. Here, since we are
conditioning on classical outcomes, S (Xt |⇣t) is always strictly
non-negative. In this paper all conditional entropies will be of
this form.

The mismatch between S (Xt) and S (Xt |⇣t) is given by the
Holevo information (or Holevo quantity) [49]

I(Xt :⇣t) := S (Xt) � S (Xt |⇣t). (12)

It quantifies the information about X contained in the classical
outcomes ⇣t. Its interpretation becomes clearer by casting it as

I(Xt :⇣t) =
X

⇣t

P(⇣t) D
�
⇢Xt |⇣t ||⇢Xt

�
> 0, (13)

where D(⇢||�) = tr(⇢ ln ⇢ � ⇢ ln�) is the quantum relative en-
tropy. Therefore, I(Xt :⇣t) is the weighted average of the “dis-
tance” between ⇢Xt |⇣t and ⇢Xt .

The Holevo information reflects the integrated information,
acquired about the system, up to time t. This is di↵erent from
the small increment that is obtained from a single outcome z,
at each step. In order to quantify such di↵erential information
gain, the natural quantity is the conditional Holevo informa-
tion

Gt := Ic(Xt :zt |⇣t�1) = I(Xt :⇣t) � I(Xt :⇣t�1) (14)

= S (Xt |⇣t�1) � S (Xt |⇣t).

It describes the correlations between Xt and the latest available
outcome zt, given the past outcomes ⇣t�1 = (z1, . . . , zt�1). The
first term involves the state ⇢Xt |⇣t�1 , which stands for the state of
the system at time t, conditioned on all measurement records,
except the last one. In symbols, it can thus be written as

⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 ), (15)

where E is the unconditional map in Eq. (2). This there-
fore a↵ords a beautiful interpretation to Eq. (14). Starting
at ⇢Xt�1 |⇣t�1 , one compares two paths: a conditional evolution
taking ⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t and a unconditional evolution taking
⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t�1 . Eq. (14) measures the gain in information
of the latter, compared to the former.

B. Information rates and informational steady-states

Eq. (12) is always non-negative. However, this does not
imply that it will necessarily increase with time. In fact, the
information rate

�It := I(Xt :⇣t) � I(Xt�1 :⇣t�1) (16)

can take any sign. This reflects the trade-o↵ between the gain
in information and the measurement backaction. A natural
question is then whether it is possible to split �It as the dif-
ference between two strictly non-negative terms, the first nat-
urally identified with the di↵erential gain of information (14),

and the second to the di↵erential information loss. That is,
whether a splitting of the form

�It = Gt � Lt, (17)

would lead to the identification of a loss term Lt which is
strictly non-negative. As we will see in what follows, the an-
swer to this question is in the positive.

To find a formula for Lt we simply insert the first line
of (14) into Eq. (16) to find

Lt := I(Xt�1 :⇣t�1) � I(Xt :⇣t�1). (18)

This is already clearly interpretable as a loss term, as it mea-
sures how information is degraded by the map in Eq. (15).
Indeed, we can show that it is strictly non-negative. To do
that, we use Eq. (13) to write Lt as

Lt =
X

⇣t�1

P(⇣t�1)
h
D(⇢Xt�1 |⇣t�1 ||⇢Xt�1 ) � D(⇢Xt |⇣t�1 ||⇢Xt )

i
. (19)

But ⇢Xt = E(⇢Xt�1 ) [Eq. (2)] and ⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 )
[Eq. (15)]. Together with the data processing inequality [50],
this is enough to ascertain the non-negativity of Lt for any
quantum channel E.

In the long time limit the system may reach a steady-state
where I1 no longer changes, so �I1 = 0. This does not
necessarily mean G1 = L1 = 0, however. It might simply
stem from a mutual balancing of gains and losses. That is,
G1 = L1 , 0. We define an informational steady-state (ISS)
as the asymptotic state for which

�IISS = 0 but GISS = LISS , 0. (20)

In an ISS, information is continuously acquired, but this is
balanced by the noise that is introduced by the measurement.
Crucially, the ISS does not mean that ⇢Xt |⇣t is no longer chang-
ing. This state is stochastic and thus continues to evolve in-
definitely. Instead, what become stationary is the stochastic
distribution of states in state-space [51].

C. Unconditional 2nd law

Next we turn to the thermodynamics. The 2nd law of ther-
modynamics characterize the degree of irreversibility of a cer-
tain process and can be formulated in purely information-
theoretic terms. This allows it to be extended beyond standard
thermal environments, and also to avoid di�culties associated
with the definition of heat and work, which can be quite prob-
lematic in the quantum regime [28].

At each collision, the entropy of the system will change
from S (Xt) to S (Xt+1). This change, however, may be either
positive or negative. The goal of the 2nd law is to identify
a contribution to this change associated with the flow of en-
tropy between system and ancilla, and another representing
the entropy that was irreversibly produced in the process. The
separation thus takes the form

�⌃u
t = S (Xt) � S (Xt�1) + ��u

t , (21)
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where ��u
t is the unconditional flow rate of entropy from the

system to the ancilla in each collision, and �⌃u
t is the uncon-

ditional rate of entropy produced in the process. The 2nd law
is summarized by the statement that we should have �⌃u

t � 0.
Eq. (21) is merely a definition, however. The goal is precisely
to determine the actual forms of ��u

t and �⌃u
t .

In standard thermal processes, this is usually accomplished
by postulating that the entropy flow ��u

t should be linked with
the heat flow Q̇t entering the ancillae through Clausius’ ex-
pression [52] ��u

t = �Q̇t, where � is the inverse temperature
of the thermal state the ancillae are in. By fixing ��u

t we then
also fix �⌃u

t . This, however, only holds for thermal ancillae,
thus restricting the range of applicability of the formalism.

Instead, we approach the problem using the framework de-
veloped in Ref. [53] (see also [40, 54]), which formulates the
entropy production rate in information theoretic terms, as

�⌃u
t = I(Xt :Y 0t ) + D(Y 0t ||Yt) > 0, (22)

where I(Xt : Y 0t ) = S (⇢Xt ) + S (⇢0Yt
) � S (⇢XtY 0t ) is the quantum

mutual information between system and ancilla after Eq. (1)
and D(Y 0t ||Yt) = D(⇢Y 0t ||⇢Yt ) is the relative entropy between the
state of the ancilla before and after the collision. The first term
thus accounts for the correlations that built up between system
and ancilla, while the second measures the amount by which
the ancillae were pushed away from their initial states. Thus,
from the perspective of the system, irreversibility stems from
tracing over the ancillae after the interaction in such a way
that all quantities related either to the local state of the ancilla,
or to their global correlations, are irretrievable [54].

As the global map in Eq. (1) is unitary, and the system and
ancillae are always uncorrelated before a collision, it follows
that

S (⇢XtY 0t ) = S (⇢Xt�1Yt ) = S (⇢Xt�1 ) + S (⇢Yt ). (23)

Hence, the mutual information may also be written as

I(Xt :Y 0t ) = S (Xt) + S (Y 0t ) � S (Xt�1) � S (Yt). (24)

Plugging this in Eq. (22) and comparing with Eq. (21) then
allows us to identify the entropy flux as

��u
t = S (Y 0t )� S (Yt)+D(Y 0t ||Yt) = tr

n
(⇢Yt � ⇢Y 0t ) ln ⇢Yt

o
. (25)

The entropy flux is seen to depend solely on the degrees of
freedom of the ancilla. Although Eq. (25) is general and holds
for arbitrary states of the ancillae, it reduces to �Q̇, as in the
Clausius expression, if ⇢Y is thermal.

Another very important property of the entropy flux is ad-
ditivity. What we call an “ancilla” may itself be a composed
system consisting of multiple elementary units. In fact, as we
will illustrate in Sec. IV, this can give rise to interesting situ-
ations. Suppose that Yt = (Yt1,Yt2, . . . ,YtN) and that the units
are prepared in a globally product state ⇢Yt =

NN
j=1 ⇢Yt j . Af-

ter colliding with the system, the state ⇢Y 0t might no longer be
uncorrelated, in general. Despite this, owing to the structure
of Eq. (25), we would have

��u
t =

NX

j=1

��u
t j =

NX

j=1

tr
n
(⇢Y 0t j
� ⇢Yt j ) ln ⇢Yt j

o
, (26)

where ⇢Y 0t j
is the post-collision reduced state of the jth unit of

the ancilla. This property is quite important, as it allows one to
compute the flux associated to each dissipation channel acting
on the system.

D. Conditional 2nd law

Eqs. (21), (22) and (25) specify the thermodynamics of the
unconditional trajectories ⇢Xt , when no information about the
ancillae is recorded. We now ask the same question for the
conditional trajectories ⇢Xt |⇣t . In this case, the relevant en-
tropy is the quantum-classical conditional entropy S (Xt |⇣t) in
Eq. (11). Thus, we search for a splitting analogous to Eq. (21),
but of the form

�⌃c
t = S (Xt |⇣t) � S (Xt�1|⇣t�1) + ��c

t , (27)

where �⌃c
t and ��c

t are the conditional counterparts of the un-
conditional quantities used in Sec. III C. The identification of
suitable forms for such quantities is the scope of this Section.

We adopt an approach similar to that used in Refs. [20, 55],
which consists in defining the conditional flux rate as the nat-
ural extension of Eq. (25) to the conditional case. That is, as
��c

t refers to a specific collision, it should depend only on
quantities pertaining to the specific ancilla Yt, thus being of
the form

��c
t = S (Y 0t |zt) � S (Yt) +

X

zt

P(zt)D
�
⇢Y 0t |zt

���
���⇢Yt

�
, (28)

where ⇢Y 0t |zt = (Mzt⇢Y 0t M†zt )/P(zt) is the final state of the an-
cilla given outcome zt and P(zt) = tr

�
Mzt⇢Y 0t M†zt ) [cf. Eq. (3)].

Moreover, S (Y 0t |zt) is defined similarly to Eq. (11). Note how
the causal structure of the model implies that the flux should
be conditioned only to outcome zt, instead of the entire mea-
surement record ⇣t.

By defining the reconstructed state of the ancilla after the
measurement ⇢̃Y 0t =

P
zt P(zt)⇢Y 0t |zt =

P
zt Mzt⇢Y 0t M†zt , Eq. (28)

can be recast into the form

��c
t = tr

n
(⇢Yt � ⇢̃Y 0t ) ln ⇢Yt

o
, (29)

which showcases the potential di↵erence between conditional
and unconditional fluxes. Depending on the measurement
strategy {Mz} being adopted, it is reasonable to expect that
⇢Y 0t , ⇢̃Y 0t , thus resulting in ��u

t , ��c
t . This reflects the

potentially invasive nature of the measurements on the an-
cilla. However, it should be noted that this is an extrinsic
e↵ect, related to the specific choice of measurement by the
observer, and fully unrelated to the thermodynamics of the
system-ancilla interactions.

We will henceforth assume that the measurement strategy
is such that

tr{⇢̃Y 0t ln ⇢Yt } = tr{⇢Y 0t ln ⇢Yt }. (30)

That is, it that does not change the population of Y 0t in the
eigenbasis of the original state ⇢Yt . This can be accomplished,
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for instance, by measuring in the same basis into which the
state of the ancillae is prepared. We can then reach the impor-
tant conclusion that

��c
t = ��

u
t . (31)

This result is intuitive: Conditioning on the outcome is a sub-
jective matter, related to whether or not we read out the out-
comes of the experiment. It should therefore have no e↵ect on
how much entropy flows to the ancillae. Similar ideas were
also used in many contexts [10, 12, 18, 55]. However, these
studies were concerned with the heat flux, which coincides
with the entropy flux for thermal baths. Here we show that
this is a general property, valid for any bath, provided we re-
strict to the special class of measurements characterized by
Eq. (30).

Under these conditions, comparing Eqs. (27) and (21), and
reminding of the information rate in Eq. (16), we find

�⌃c
t = �⌃

u
t � �It. (32)

This is a key result of our framework: It shows how the act
of conditioning the dynamics on the measurement outcome
changes the entropy production by a quantity associated with
the change in the Holevo information. Hence, it serves as
a bridge between the information rates and thermodynamics.
In particular, in an ISS, �IISS = 0 and so �⌃c

ISS = �⌃
u
ISS,

although ⇢Xt and ⇢Xt |⇣t are in general di↵erent.

E. Properties of the conditional entropy production

We now move on to discuss the main properties of the con-
ditional entropy production. The quantities �⌃u

t and �⌃c
t refer

to the incremental entropy production in a single collision.
Conversely, it is also of interest to analyze the integrated en-
tropy production

⌃↵t =

tX

⌧=1

�⌃↵⌧ , ↵ = u, c. (33)

Since �It in Eq. (16) is an exact di↵erential, when we sum
Eq. (32) up to time t, the terms in �I⌧ successively cancel,
leaving only

⌃c
t = ⌃

u
t � I(Xt :⇣t). (34)

The integrated entropy production up to time t therefore de-
pends only on the net information I(Xt : ⇣t). Since I(Xt : ⇣t) >
0, it then follows that

⌃u
t > ⌃

c
t . (35)

Therefore, conditioning makes the process more reversible.
This happens because we only carry out measurements in the
environment, so that there is never a direct backaction in the
system. A stronger bound can also be obtained by using the
fact that Lt > 0, which then leads to

⌃u � ⌃c >
tX

⌧=1

G⌧. (36)

The reduction in entropy production is thus at least the total
information gain.

Returning now to the entropy production rate in each col-
lision, in Appendix B we provide a proof of the following
relation

�⌃c
t > D(Y 0t ||Yt) + I(Y 0t :⇣t) > 0, (37)

where D(Y 0t ||Yt), is the backaction caused in the ancillary state
due to its collision with the system, while I(Y 0t :⇣t�1) quantifies
the amount of information gained about the ancilla through the
measurement strategy. This is one of the overarching conclu-
sions of our work, bearing remarkable consequences. On the
one hand, it proves that the 2nd law continues to be satisfied
in the conditional case. On the other hand, it provides a non-
trivial lower bound to the conditional entropy production rate
in terms of the changes that take place in the ancillae only.
It should also be noted that, the first inequality in Eq. (37) is
saturated by processes where the measurement extracts all the
information available.

IV. SIMPLE QUBIT MODELS

We now apply the ideas of the previous sections to sim-
ple models of CM2s, aimed at illustrating their overarching
features while keeping the level of technical details to a min-
imum, so as to emphasize the physical implications of the
framework illustrated so far.

We will focus on the case in which both the system and
the elementary units of the ancilla are qubits. Despite their
simplicity, such situations have far-reaching applications. For
instance, in Ref. [45] it was shown how quantum optical
stochastic master equations naturally emerge from modeling
opticals baths in terms of e↵ective qubits in a collisional
model. Moreover, suitably chosen measurement stategies
{Mz} implemented on qubits allow also to simulate widely
used measurement schemes, such as photo-detection, ho-
modyne and heterodyne measurements. Finally, by tuning
the initial state of the qubits, one can also simulate out-
of-equilibrium environments, such as squeezed baths. In
Ref. [56], we complement the study reported here by address-
ing explicitly the case of continuous-variable systems.

Recall that a CM2 is completely specified by setting
{⇢Y ,U,Mz}. The unconditional dynamics is governed by the
map E defined in Eq. (2), which can be simulated directly
with very low computational cost. The conditional dynam-
ics, on the other hand, is governed by the map Ez in Eqs. (8)
and (9), which we simulate using stochastic trajectories.

A. Single-qubit ancilla

We begin by studying the case where the system inter-
acts with single-qubit ancillae prepared in the thermal state
⇢Y = f |0ih0|Y + (1 � f )|1ih1|Y , where f 2 [0, 1] and |0i , |1i
is the computational basis — i.e., the eigenstates of the Pauli-
z operator �z

Y = |1ih1|Y � |0ih0|Y . The collisions are mod-
eled by a partial SWAP gate U = e�ig(�+X�

�
Y+�

�
X�
+
Y ), where
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Each term S (⇢Xt |⇣t ) quantifies the information for one specific
realization ⇣t, and S (Xt |⇣t) is then an average over all trajec-
tories. Note also that this is not the quantum conditional en-
tropy, a quantity which can be negative. Here, since we are
conditioning on classical outcomes, S (Xt |⇣t) is always strictly
non-negative. In this paper all conditional entropies will be of
this form.

The mismatch between S (Xt) and S (Xt |⇣t) is given by the
Holevo information (or Holevo quantity) [49]

I(Xt :⇣t) := S (Xt) � S (Xt |⇣t). (12)

It quantifies the information about X contained in the classical
outcomes ⇣t. Its interpretation becomes clearer by casting it as

I(Xt :⇣t) =
X

⇣t

P(⇣t) D
�
⇢Xt |⇣t ||⇢Xt

�
> 0, (13)

where D(⇢||�) = tr(⇢ ln ⇢ � ⇢ ln�) is the quantum relative en-
tropy. Therefore, I(Xt :⇣t) is the weighted average of the “dis-
tance” between ⇢Xt |⇣t and ⇢Xt .

The Holevo information reflects the integrated information,
acquired about the system, up to time t. This is di↵erent from
the small increment that is obtained from a single outcome z,
at each step. In order to quantify such di↵erential information
gain, the natural quantity is the conditional Holevo informa-
tion

Gt := Ic(Xt :zt |⇣t�1) = I(Xt :⇣t) � I(Xt :⇣t�1) (14)

= S (Xt |⇣t�1) � S (Xt |⇣t).

It describes the correlations between Xt and the latest available
outcome zt, given the past outcomes ⇣t�1 = (z1, . . . , zt�1). The
first term involves the state ⇢Xt |⇣t�1 , which stands for the state of
the system at time t, conditioned on all measurement records,
except the last one. In symbols, it can thus be written as

⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 ), (15)

where E is the unconditional map in Eq. (2). This there-
fore a↵ords a beautiful interpretation to Eq. (14). Starting
at ⇢Xt�1 |⇣t�1 , one compares two paths: a conditional evolution
taking ⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t and a unconditional evolution taking
⇢Xt�1 |⇣t�1 ! ⇢Xt |⇣t�1 . Eq. (14) measures the gain in information
of the latter, compared to the former.

B. Information rates and informational steady-states

Eq. (12) is always non-negative. However, this does not
imply that it will necessarily increase with time. In fact, the
information rate

�It := I(Xt :⇣t) � I(Xt�1 :⇣t�1) (16)

can take any sign. This reflects the trade-o↵ between the gain
in information and the measurement backaction. A natural
question is then whether it is possible to split �It as the dif-
ference between two strictly non-negative terms, the first nat-
urally identified with the di↵erential gain of information (14),

and the second to the di↵erential information loss. That is,
whether a splitting of the form

�It = Gt � Lt, (17)

would lead to the identification of a loss term Lt which is
strictly non-negative. As we will see in what follows, the an-
swer to this question is in the positive.

To find a formula for Lt we simply insert the first line
of (14) into Eq. (16) to find

Lt := I(Xt�1 :⇣t�1) � I(Xt :⇣t�1). (18)

This is already clearly interpretable as a loss term, as it mea-
sures how information is degraded by the map in Eq. (15).
Indeed, we can show that it is strictly non-negative. To do
that, we use Eq. (13) to write Lt as

Lt =
X

⇣t�1

P(⇣t�1)
h
D(⇢Xt�1 |⇣t�1 ||⇢Xt�1 ) � D(⇢Xt |⇣t�1 ||⇢Xt )

i
. (19)

But ⇢Xt = E(⇢Xt�1 ) [Eq. (2)] and ⇢Xt |⇣t�1 = E(⇢Xt�1 |⇣t�1 )
[Eq. (15)]. Together with the data processing inequality [50],
this is enough to ascertain the non-negativity of Lt for any
quantum channel E.

In the long time limit the system may reach a steady-state
where I1 no longer changes, so �I1 = 0. This does not
necessarily mean G1 = L1 = 0, however. It might simply
stem from a mutual balancing of gains and losses. That is,
G1 = L1 , 0. We define an informational steady-state (ISS)
as the asymptotic state for which

�IISS = 0 but GISS = LISS , 0. (20)

In an ISS, information is continuously acquired, but this is
balanced by the noise that is introduced by the measurement.
Crucially, the ISS does not mean that ⇢Xt |⇣t is no longer chang-
ing. This state is stochastic and thus continues to evolve in-
definitely. Instead, what become stationary is the stochastic
distribution of states in state-space [51].

C. Unconditional 2nd law

Next we turn to the thermodynamics. The 2nd law of ther-
modynamics characterize the degree of irreversibility of a cer-
tain process and can be formulated in purely information-
theoretic terms. This allows it to be extended beyond standard
thermal environments, and also to avoid di�culties associated
with the definition of heat and work, which can be quite prob-
lematic in the quantum regime [28].

At each collision, the entropy of the system will change
from S (Xt) to S (Xt+1). This change, however, may be either
positive or negative. The goal of the 2nd law is to identify
a contribution to this change associated with the flow of en-
tropy between system and ancilla, and another representing
the entropy that was irreversibly produced in the process. The
separation thus takes the form

�⌃u
t = S (Xt) � S (Xt�1) + ��u

t , (21)
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FIG. 1. (a) A typical method for continuously monitoring a system is to couple it to an optical cavity and measure the photons leaking out.
(b) In a collisional model picture, the monitoring is introduced instead through a series of sequential collisions between the system X and
independent ancillae Yt, which are subjected to measurement after each collision. (c) Diagrammatic representation of the model. The system
is described stroboscopically (discrete time) by a state ⇢Xt . At each instant of time, it interacts with an independent ancilla, prepared in state
⇢Y , according to the map in Eq. (1). Afterwards, the ancillae are measured, as described by generalized measurement operators {Mz}, which
produce a classical (and random) outcome zt. (d) As time progresses, one builds up a measurement record ⇣t = (z1, . . . , zt), which contains all
the information acquired about X up to time t.

As the measurements are performed only on the ancillae, there
is never a direct backaction on the system, which is expressed
mathematically by

X

⇣t

P(⇣t)⇢Xt |⇣t = ⇢Xt (7)

for any choice of generalized measurements {Mz}. That is,
the average of ⇢Xt |⇣t over all outcomes ⇣t yields back the un-
conditional state ⇢Xt . Thus, while there may be a conditional
backaction, unconditionally the measurement is non-invasive.

The normalization factor P(⇣t) in Eq. (6) introduces a un-
wanted complication, as it forbids us to write ⇢Xt |⇣t as a map
acting on ⇢Xt�1 |⇣t�1 . This can be resolved, however, if we work
with unnormalized states. We define the completely positive,
trace non-preserving map

Ez(⇢X) = trY
n
MzU(⇢X ⌦ ⇢Y )U†M†z

o
, (8)

which is indexed by the possible outcomes z of the measure-
ments. Instead of working with ⇢Xt |⇣t in Eq. (6), we consider
the unnormalized states %Xt |⇣t , defined as the sequence gener-
ated by the map

%Xt |⇣t = Ezt

�
%Xt�1 |⇣t�1

�
(9)

with initial condition %X0 |⇣0 = ⇢X0 . One may readily verify that

trX %Xt |⇣t = trX
n
Ezt � . . . � Ez1 (⇢X0 )

o
= P(⇣t). (10)

The states %Xt |⇣t therefore contain the outcome distribution
P(⇣t) at any given time. And the normalized state in (6) is
recovered as ⇢Xt |⇣t = %Xt |⇣t/P(⇣t).

It is useful to keep in mind the interpretation of a CM2 as
a Hidden Markov model [9, 47, 48]. The system evolution
is Markovian, but this is hidden from the observer who is par-
tially ignorant about its dynamics: access to X is only possible
through the classical outcomes ⇣t. In the language of Bayesian
networks, the key issue entailed by our framework is thus
about the predictions that can be made on the state of the hid-
den layer X given the information available through the visible
layer of the outcomes ⇣t only. This highlights the nice inter-
play between quantum and classical features, present in these
models: The evolution of the system is quantum but infor-
mation is only accessed through classical data. We have also
found it illuminating to understand what would be the clas-
sical version of a CM2, as this allows us to relate our frame-
work directly with the classical formalism of Ito, Sagawa and
Ueda [9, 10]. This is addressed in Appendix A, where we also
discuss the conditions for a CM2 to be incoherent.

III. INFORMATION AND THERMODYNAMICS

A. Quantum-classical information

The information content in the unconditional state ⇢Xt can
be quantified by the von Neumann entropy S (Xt) ⌘ S (⇢Xt ) =
� tr ⇢Xt ln ⇢Xt . Similarly, the information in the conditional
state ⇢Xt |⇣t (properly normalized) is quantified by quantum-
classical conditional entropy

S (Xt |⇣t) =
X

⇣t

P(⇣t)S (⇢Xt |⇣t ). (11)
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Figure 1: Measuring a mechanical quantum trajectory. a, Experimental setup. The
mechanical resonator is coupled to an optical cavity, driven resonantly by a probe laser
(red). The motion is imprinted on the phase quadrature of the transmitted light, which
is measured with a balanced homodyne detector. The photocurrent I(t) is digitized and
analyzed in post-processing. b, Example calibrated photocurrent, containing information
about all mechanical modes coupled to the cavity. Inset shows one quadrature signal
obtained by demodulating the photocurrent at ⌦m. c Sketch of a quantum trajectory
in phase space, in terms of the first moment ~r (red line) and conditional variance (dark
gray area, standard deviation). The variance is reduced as information is gathered during
the measurements. Averaging di↵erent realizations together leads to an unconditional,
thermal state (light gray area), with variance Vbath. d, e Measured single quantum
trajectory~r(t), in terms of the slowly-varying quadratures, ~X(t) and ~Y (t). Insets illustrate
the predicted decay of the conditional variance as the conditional state collapses (gray
shaded area, standard deviation).
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Figure 1: Measuring a mechanical quantum trajectory. a, Experimental setup. The
mechanical resonator is coupled to an optical cavity, driven resonantly by a probe laser
(red). The motion is imprinted on the phase quadrature of the transmitted light, which
is measured with a balanced homodyne detector. The photocurrent I(t) is digitized and
analyzed in post-processing. b, Example calibrated photocurrent, containing information
about all mechanical modes coupled to the cavity. Inset shows one quadrature signal
obtained by demodulating the photocurrent at ⌦m. c Sketch of a quantum trajectory
in phase space, in terms of the first moment ~r (red line) and conditional variance (dark
gray area, standard deviation). The variance is reduced as information is gathered during
the measurements. Averaging di↵erent realizations together leads to an unconditional,
thermal state (light gray area), with variance Vbath. d, e Measured single quantum
trajectory~r(t), in terms of the slowly-varying quadratures, ~X(t) and ~Y (t). Insets illustrate
the predicted decay of the conditional variance as the conditional state collapses (gray
shaded area, standard deviation).

4

Observing trajectories  
of mechanical systems

Experimental Entropy production

Entropy Production: theoretical results

Alessio Belenchia

Scope

In these notes we derive the theoretical expressions for the entropy production and informational
quantities in terms of the experimental parameters and the dynamical covariance matrix of the
system. We also show the result of the theoretical predictions once the numerical values of the
various parameters are used.

Dynamics of the mechanical oscillator

The dynamics of the mechanical oscillator subject to the continuous measurement is described
by the stochastic master equation

d⇢ = (Lth + Lqba)⇢ dt+
p

�meas [H[x̂]⇢dWx +H[ŷ]⇢dWy] , (1)

where Lth⇢ = �mn̄D[a†]⇢+ �m(n̄+ 1/2)D[a]⇢ and Lqba⇢ = �qba

�
D[a†]⇢+D[a]⇢

�
.

1 First and second moments: dictionary between the model
and the theoretical formalism

The equations for the first and second (predicted) moments are

dr(t) = �
�m

2
r(t)dt+

p
4�measV (t)dW, (2)

V̇ (t) = ��mV (t) + �m(n̄+ 1/2) + �qba � 4�measV (t)2. (3)

These have to be compared with the matrix equations

dr(t) = Ar(t)dt+ (V (t)CT + �T )dW, (4)

V̇ (t) = AV (t) + V (t)AT +D � (V (t)CT + �T )(CV (t) + �T )| {z }
�(V (t))

. (5)

Note that in these second equations, V (t) actually stands for the matrix V (t)I2⇥2.
From these expressions we can identify

A = �
�m

2
I2⇥2 (6)

D = (�m(n̄+ 1/2) + �qba)I2⇥2 (7)

CT =
p

4�measI2⇥2 (8)

� = 0. (9)

theoretical counterpart
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of the optomechanical system, thus its preparation re-
quires only to wait for the initial brief transient to decay,
before conditioning upon the measurement outcomes.
The conditional dynamics described by Eq. (3), on the
other hand, has both first and second cumulants evolv-
ing non-trivially according to

dr(t) = �
�m

2
rdt+

q
4⌘det�qbaV (t)dW, (5)

V̇ (t) = �m(Vuc � V (t))� 4⌘det�qbaV (t)2. (6)

The ensuing dynamics gives the covariance V (t) =
V (t)11 where we have introduced the identity matrix 11
and the c-number variance V (t) = hX̂

2
i�hX̂i

2 = hŶ
2
i�

hŶ i
2 [37]. The first cumulants thus evolve stochastically,

while the second ones obey a deterministic non-linear
evolution. It should be noted that, the process entailed
by this model is dynamically stable, as it can be easily
verified following the criteria discussed in [44]. This en-
sures the convergence of any quantity integrated over
long-time windows.

The last term in Eq. (6) is associated with the infor-
mation acquired by the measurement, and we dub it in-
novation. It is non-positive as acquired information can
never increase the uncertainty about the mechanical mo-
tion. According to Eq. (6), the initial unconditional vari-
ance Vuc evolves into the conditional steady-state value
Vss = �µ+

p
µ(µ+ 2Vuc) with µ = �m/(8⌘det�qba). Ow-

ing to the innovation term, Vss 6 Vuc given that µ > 0.
The continuous weak measurements thus lead to a con-
ditional steady-state density matrix with a higher pu-
rity than the unconditional one [45, 46]. This is an in-
stance of measurement-based cooling and was exper-
imentally demonstrated in [31]. The conditional first
cumulants r(t) in Eq. (5) are related to the experimen-
tal homodyning measurement outcomes i(t) through
i(t)dt =

p
4⌘det�qbar(t)dt + dW. In practice, the latter

relation is used to express dW in terms of the outcomes,
i(t), and substituted in Eq. (5). This yields a recursive
relation used to experimentally filter the data i(t) to ob-
tain the first cumulant r(t). The conditional variance
V (t), however, evolves independently of the specific
measurement outcomes. To assesses it experimentally
we thus employ a prediction-retrodiction method [31],
which reconstructs V (t) by combining data on r(t0) ac-
quired at earlier (t0 < t) and later times (t0 > t). Such
future outcomes can be used to obtain a retrodicted tra-
jectory, rb(t), [47] using an experimental filter similar to
what has been derived fro r(t) [37]. The fluctuations
of the difference d(t) = r(t) � rb(t) over an ensemble
of independent realisations can be shown to be directly
connected to V (t) according to the relation [37]

Vd(t) = V (t) + Vss + �m/(4⌘det�qba). (7)

In the limit of high-cooperativity (�qba � �m) and large
detection efficiency (⌘det ⇡ 1) the last term can be ne-

FIG. 1. Conditional mechanical evolution. Measured condi-
tional variance V (t) (blue line), from the initial unconditional
value Vuc ⇡ 34 to the steady-state Vss ⇡ 0.8 . The dashed line
is a theoretical prediction. The inset shows a sketch of the ex-
perimental system, which comprises a cryogenic optomechan-
ical cavity resonantly driven by a coherent probe laser. The
mechanical resonator is in thermal contact with two baths: a
thermal, cryogenic bath and the optical bath. The output field
is continuously monitored by means of a homodyne receiver.
The photocurrent i is used to estimate the conditional mechan-
ical state.

glected. The value of Vss and V (t) are then readily ob-
tained as Vss = Vd(1)/2 [31] and V (t) = Vd(t) � Vss,
respectively.

Figure 1 shows the evolution of V (t) from the initial
unconditional value Vuc, all the way to the steady-state
value Vss. The experimental data compare very well
to the theoretical prediction provided by Eq. (6), thus
strongly corroborating the suitability of our model.

Entropy production along individual trajectories. We
are now in a position to assess the thermodynamics of
the system at the level of individual quantum trajecto-
ries. Our setup is not a standard thermodynamic sys-
tem due to the presence of the optical cavity, which acts
as a non-thermal bath. The usual formulation of en-
tropy production thus does not apply. Despite this, it is
possible to employ an alternative put forth in Ref. [32],
which makes use of quantum phase-space methods and
is adequate for the description of Gaussian dynamics.
This approach has already been successfully applied to
the experimental characterisation of the mean entropy
production in the dynamics of open mesoscopic sys-
tems [48]. In Ref. [30], the method was extended to
account for the presence of quantum-limited detectors
continuously monitoring the system.

When applied to our experimental endeavours [37],
such theoretical framework shows that the conditional
entropy flux and production rates, defined in Eq. (1), can
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Figure 1: Measuring a mechanical quantum trajectory. a, Experimental setup. The
mechanical resonator is coupled to an optical cavity, driven resonantly by a probe laser
(red). The motion is imprinted on the phase quadrature of the transmitted light, which
is measured with a balanced homodyne detector. The photocurrent I(t) is digitized and
analyzed in post-processing. b, Example calibrated photocurrent, containing information
about all mechanical modes coupled to the cavity. Inset shows one quadrature signal
obtained by demodulating the photocurrent at ⌦m. c Sketch of a quantum trajectory
in phase space, in terms of the first moment ~r (red line) and conditional variance (dark
gray area, standard deviation). The variance is reduced as information is gathered during
the measurements. Averaging di↵erent realizations together leads to an unconditional,
thermal state (light gray area), with variance Vbath. d, e Measured single quantum
trajectory~r(t), in terms of the slowly-varying quadratures, ~X(t) and ~Y (t). Insets illustrate
the predicted decay of the conditional variance as the conditional state collapses (gray
shaded area, standard deviation).

4

Observing trajectories  
of mechanical systems

Initial state: equilibrium state  
at environment temperature

Steady state of the unconditional  
dynamics: NESS very close to equilibrium

Πuc(t) = const . Πc(t) = ·ℐ + const .and

M. Rossi, L. Mancino, G. T. Landi, M. Paternostro, A. Schliesser,  
and A. Belenchia, Phys. Rev. Lett. 125, 080601 (2020)

·ℐ

4

be written in terms of the first and second cumulants as

�c,r =
�m

nth + 1/2
[(nth + 1/2)� ✓(t)]� 4�qba✓(t),

(8)

⇡c,r = �m


✓(t)

nth + 1/2
+

Vuc

V (t)
� 2

�
+ 4�qba [✓(t)�⌘detV (t)] ,

where ✓(t) = V (t) + r(t)Tr(t)/2 encompasses all the
stochastic contributions [cf. Eq. (5)]. We can experimen-
tally reconstruct such quantities by means of the mea-
sured stochastic trajectories r(t) and the inferred condi-
tional variance V (t). We show in Fig. 2 some realisations
of the stochastic entropy flux and production rates. De-
spite the low thermal occupancy of nth ⇡ 14 phonons,
these quantities fluctuate substantially, highlighting the
essential role of fluctuations in the thermodynamics of
the system.

We also average them over 3600 trajectories, yielding
the conditional flux and production rates �c = E(�c,r)
and ⇧c = E(⇡c,r), which are shown in Fig. 2, dark
blue. These quantities can be readily computed from our
model by noting that, owing to Eqs. (5) and (6) and our
choice of initial conditions, we have E

⇥
✓(t)

⇤
= Vuc. From

Fig. 2 we gather that both �c and ⇧c relax monoton-
ically towards the new steady-state values. However,
even at the steady-state, the entropy production rate ⇧c

does not vanish due to the non-equilibrium nature of the
stationary state, where the effects of the thermal bath,
measurement backaction, and information gain com-
pete with each other.
Information gain. The influence that monitoring the
system has on the irreversibility of the dynamics is en-
coded in the mismatch between the conditional entropy
production rate ⇧c and the unconditional one ⇧uc [cf.
Eq. (2]. Such mismatch is quantified by the net rate of
information gain achieved through measuring

İ = �m (Vuc/V (t)� 1)� 4⌘det�qbaV (t). (9)

The temporal behaviour of İ reconstructed from the ex-
perimental data is shown in Fig. 3. As in our case the
system is prepared in the steady-state of the uncon-
ditional dynamics, the first and second cumulants in
the absence of monitoring remain constant in time, and
the unconditional rate of entropy production keeps the
value ⇧uc = �m

⇥
Vuc/(nth+1/2)�1

⇤
+4�qbaVuc (cf. [37] for

further details). We can thus subtract such value from
⇧c in Fig. 2 to obtain the net rate of acquired informa-
tion due to the continuous monitoring.

As the quantity �
R1
0 İdt quantifies the mutual infor-

mation between system and detector [30], and given that
İ vanishes in the (conditional) steady-state [cf. Fig. 3],
such quantity tends to a constant in the long-time limit.
This is intuitively understood from the fact that, in the
steady-state, monitoring the system does not add any

FIG. 2. Stochastic entropy flux and production rates. a, The
stochastic entropy flux rates (light blue) for a sample of 10
trajectories. The dark blue line is the ensemble average over
all the trajectories. b, The stochastic entropy production rates
(light blue) and the ensemble average (dark blue), for the same
sample of trajectories.

additional information. If, however, the monitoring pro-
cess suddenly stops, the conditional steady-state will
not be sustained and the system will heat-up back to-
wards Vuc. Constant monitoring is thus necessary to
maintain the conditional steady-state. In other words,
even at the steady-state, information is constantly be-
ing acquired, but noise is constantly being introduced
by the phonon bath. It is thus interesting to identify
which of the terms in İ is responsible for the incremen-
tal gains of information required to maintain the condi-
tional steady-state.

This concept can be readily understood from inspect-
ing Eq. (9), which consists of the competition between
the noise introduced by the phonon bath (at rate �m) and
the gain of information (proportional to the detection ef-
ficiency ⌘det). We can thus quite naturally introduce the
differential gain G(t) := �4⌘det�qbaV (t) and notice that,
in light of the interpretation of the last term in Eq. (6) as
an innovation rate, G(t) is the contribution of this inno-
vation to İ. The behaviour of İ and G(t) inferred from
the experimental data are shown in Fig. 3: the initial
closeness of G(t) to İ suggests that the early stages of the
dynamics are strongly affected by the differential infor-
mation gain. As the dynamics approaches the steady-
state, however, the contribution from G(t) become less
significant. However, while İ ! 0, G(t) tends to the
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We also average them over 3600 trajectories, yielding
the conditional flux and production rates �c = E(�c,r)
and ⇧c = E(⇡c,r), which are shown in Fig. 2, dark
blue. These quantities can be readily computed from our
model by noting that, owing to Eqs. (5) and (6) and our
choice of initial conditions, we have E

⇥
✓(t)

⇤
= Vuc. From

Fig. 2 we gather that both �c and ⇧c relax monoton-
ically towards the new steady-state values. However,
even at the steady-state, the entropy production rate ⇧c

does not vanish due to the non-equilibrium nature of the
stationary state, where the effects of the thermal bath,
measurement backaction, and information gain com-
pete with each other.
Information gain. The influence that monitoring the
system has on the irreversibility of the dynamics is en-
coded in the mismatch between the conditional entropy
production rate ⇧c and the unconditional one ⇧uc [cf.
Eq. (2]. Such mismatch is quantified by the net rate of
information gain achieved through measuring

İ = �m (Vuc/V (t)� 1)� 4⌘det�qbaV (t). (9)

The temporal behaviour of İ reconstructed from the ex-
perimental data is shown in Fig. 3. As in our case the
system is prepared in the steady-state of the uncon-
ditional dynamics, the first and second cumulants in
the absence of monitoring remain constant in time, and
the unconditional rate of entropy production keeps the
value ⇧uc = �m

⇥
Vuc/(nth+1/2)�1

⇤
+4�qbaVuc (cf. [37] for

further details). We can thus subtract such value from
⇧c in Fig. 2 to obtain the net rate of acquired informa-
tion due to the continuous monitoring.

As the quantity �
R1
0 İdt quantifies the mutual infor-

mation between system and detector [30], and given that
İ vanishes in the (conditional) steady-state [cf. Fig. 3],
such quantity tends to a constant in the long-time limit.
This is intuitively understood from the fact that, in the
steady-state, monitoring the system does not add any

FIG. 2. Stochastic entropy flux and production rates. a, The
stochastic entropy flux rates (light blue) for a sample of 10
trajectories. The dark blue line is the ensemble average over
all the trajectories. b, The stochastic entropy production rates
(light blue) and the ensemble average (dark blue), for the same
sample of trajectories.

additional information. If, however, the monitoring pro-
cess suddenly stops, the conditional steady-state will
not be sustained and the system will heat-up back to-
wards Vuc. Constant monitoring is thus necessary to
maintain the conditional steady-state. In other words,
even at the steady-state, information is constantly be-
ing acquired, but noise is constantly being introduced
by the phonon bath. It is thus interesting to identify
which of the terms in İ is responsible for the incremen-
tal gains of information required to maintain the condi-
tional steady-state.

This concept can be readily understood from inspect-
ing Eq. (9), which consists of the competition between
the noise introduced by the phonon bath (at rate �m) and
the gain of information (proportional to the detection ef-
ficiency ⌘det). We can thus quite naturally introduce the
differential gain G(t) := �4⌘det�qbaV (t) and notice that,
in light of the interpretation of the last term in Eq. (6) as
an innovation rate, G(t) is the contribution of this inno-
vation to İ. The behaviour of İ and G(t) inferred from
the experimental data are shown in Fig. 3: the initial
closeness of G(t) to İ suggests that the early stages of the
dynamics are strongly affected by the differential infor-
mation gain. As the dynamics approaches the steady-
state, however, the contribution from G(t) become less
significant. However, while İ ! 0, G(t) tends to the

Πuc(t)



Observing entropy  
production rates 

of a measured system

M. Rossi, L. Mancino, G. T. Landi, M. Paternostro, A. Schliesser,  
and A. Belenchia, Phys. Rev. Lett. 125, 080601 (2020)

4

be written in terms of the first and second cumulants as

�c,r =
�m

nth + 1/2
[(nth + 1/2)� ✓(t)]� 4�qba✓(t),

(8)

⇡c,r = �m


✓(t)

nth + 1/2
+

Vuc

V (t)
� 2

�
+ 4�qba [✓(t)�⌘detV (t)] ,

where ✓(t) = V (t) + r(t)Tr(t)/2 encompasses all the
stochastic contributions [cf. Eq. (5)]. We can experimen-
tally reconstruct such quantities by means of the mea-
sured stochastic trajectories r(t) and the inferred condi-
tional variance V (t). We show in Fig. 2 some realisations
of the stochastic entropy flux and production rates. De-
spite the low thermal occupancy of nth ⇡ 14 phonons,
these quantities fluctuate substantially, highlighting the
essential role of fluctuations in the thermodynamics of
the system.

We also average them over 3600 trajectories, yielding
the conditional flux and production rates �c = E(�c,r)
and ⇧c = E(⇡c,r), which are shown in Fig. 2, dark
blue. These quantities can be readily computed from our
model by noting that, owing to Eqs. (5) and (6) and our
choice of initial conditions, we have E

⇥
✓(t)

⇤
= Vuc. From

Fig. 2 we gather that both �c and ⇧c relax monoton-
ically towards the new steady-state values. However,
even at the steady-state, the entropy production rate ⇧c

does not vanish due to the non-equilibrium nature of the
stationary state, where the effects of the thermal bath,
measurement backaction, and information gain com-
pete with each other.
Information gain. The influence that monitoring the
system has on the irreversibility of the dynamics is en-
coded in the mismatch between the conditional entropy
production rate ⇧c and the unconditional one ⇧uc [cf.
Eq. (2]. Such mismatch is quantified by the net rate of
information gain achieved through measuring
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additional information. If, however, the monitoring pro-
cess suddenly stops, the conditional steady-state will
not be sustained and the system will heat-up back to-
wards Vuc. Constant monitoring is thus necessary to
maintain the conditional steady-state. In other words,
even at the steady-state, information is constantly be-
ing acquired, but noise is constantly being introduced
by the phonon bath. It is thus interesting to identify
which of the terms in İ is responsible for the incremen-
tal gains of information required to maintain the condi-
tional steady-state.

This concept can be readily understood from inspect-
ing Eq. (9), which consists of the competition between
the noise introduced by the phonon bath (at rate �m) and
the gain of information (proportional to the detection ef-
ficiency ⌘det). We can thus quite naturally introduce the
differential gain G(t) := �4⌘det�qbaV (t) and notice that,
in light of the interpretation of the last term in Eq. (6) as
an innovation rate, G(t) is the contribution of this inno-
vation to İ. The behaviour of İ and G(t) inferred from
the experimental data are shown in Fig. 3: the initial
closeness of G(t) to İ suggests that the early stages of the
dynamics are strongly affected by the differential infor-
mation gain. As the dynamics approaches the steady-
state, however, the contribution from G(t) become less
significant. However, while İ ! 0, G(t) tends to the
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FIG. 3. Informational contribution to the entropy produc-
tion rate. We obtain the informational contribution (dark blue)
from the entropy production. The dashed (dot-dashed) line is
the differential gain of information due to the measurement
(loss of information due to noise input by the phonon bath).

(in general small) non-null value G(1) = �4⌘det�qbaVss,
which thus represents the gain of information per unit
time that the detector must acquire in order to maintain
the steady-state.
Conclusions. We have investigated the effects of weak
continuous measurements on the thermodynamics of a
mesoscopic mechanical system. By employing a phase-
space formalism [30] and the retrodictive techniques
used in Ref. [31], we have connected pivotal thermody-
namic quantities, such as entropy production and flux
rates along individual dynamical trajectories, to accessi-
ble experimental data. The working point of our exper-
iment has enabled us to single out the contributions to
the entropy production of the system due solely to the
information acquired by monitoring the system. Such
contribution decreases in time as the system reaches a
non-equilibrium steady state.

Our endeavours demonstrate the key role played by
measurements in influencing the energetics of a quan-
tum system. Remarkably, they showcase the intricate
interplay between fundamental energy-exchange pro-
cesses and information in setting up (and sustain) the
dynamical and steady-state features of a process. Such
influences can be further explored by assessing whether
the control of informational terms to entropy production
stemming from suitable measurement strategy could be
used as an effective tool for quantum state engineer-
ing [49]. Another interesting direction would address
composite systems endowed with initial quantum cor-
relations and the experimental study of their effects, in
conjunction with continuous monitoring, on the ther-
modynamics of the systems.
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