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Motivation

Strong-coupling thermodynamics
* Here we focus on calculating the full work
distribution for a driven open system
« Standard approaches generally assume
system-reservoir interactions play negligible
role
* Determining statistics of work in strong
coupling regimes is a formidable task
* Requires calculation of full
eigenspectrum of system and reservoir
* We will circumvent this issue using a unitary
polaron transformation
* Maps our open system to a new frame
where a weak-coupling-like theory can
be applied
« Application to a Landau-Zener protocol
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Example open quantum systems
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* Strong coupling to phonons
* Weak coupling to the
electromagnetic field

Non-additivity of multiple environments

H. Maguire, J. Iles-Smith, and AN, PRL 123, 093601
C. McConnell and AN, JCP 151, 054104 (2019)
C. McConnell and AN, NJP 24, 025002 (2022)

(2019)

Molecular Nanojunctions

B. Chen and K. Xu,
Nano 14, 1930007/
(2019)

« Strong coupling to vibrations
* Weak tunnel coupling to the leads



Work: two-point measurement

We characterise (stochastic) work via the two-point measurement protocol
« Consider projective energy measurements performed on combined system
and environment, which is closed and evolves unitarily under the action of

an external force
= Blqf ) + Hp + H(t
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P. Talkner, E. Lutz, P. Hanggi, Phys. Rev. E 75, 050102(R) (2007)




Work probability density

€m (1)

tr (I, U ()T, p(0)IL, U (1))

€ (0)

p(n) = tr(Mup(0))  p(m,tln) = % 4

Work done on system is measured energy difference, leading to probability density

Zp p(m, t{n)o(w — [em(t) — €n(0)])

P. Talkner, E. Lutz, P. Hanggi, Phys. Rev. E 75, 050102(R) (2007)




Work characteristic function

For practical purposes, it is easier to work with the characteristic

function .
B(y) = / dweX p(w)

Contains all statistical information about the work performed on our
closed system+environment
k
k072 (x)
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Characteristic function can be written in terms of a counting-field
dependent density operator

®(x) = tr(p(x,t)) = trs(ps(x,t))

With reduced density operator (which we look to approximate)

ps(x,t) =tre(p(x,t))



Work counting statistics

Counting-field dependent density operator obeys an equation of
motion of the form

p(x,t) = —i(H(x, t)p(x,t) — p(x, t) H(—x,1))

With a transformed Hamiltonian
H(x,t) = H(t) 4 i0,(eXH®)/2)g=ixH(t)/2

Reduced density operator obeys a generalised master equation

le(Xa t) = ‘C(Xa t)pS(Xa t)

Form of the Liouvillian depends on the approximations made, e.g.
* Weak coupling
» Slow time dependence (adiabatic)

M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod. Phys. 81,1665 (2009),
Rev. Mod. Phys. 86, 1125 (2014)



Adiabatic Markovian master equations

Dealing with arbitrary time-dependence can be difficult, so we will
consider the adiabatic limit of slow external driving and static interactions

H(t) = Hg(t) + Hp + H;

Following Albash et al. we can derive a Markovian Lindblad master
equation under the Born-Markov-secular approximations:

ps(t) = L2 (t)ps(t) = —i[Hs(t) + His(t), ps(t)] + D(t)ps(t)

= 3 Y lt) L O (L at) = 5 (LD o)L 0)p5(0)

af w
Applying the same approximations to the counting-field dependent density

operator, and ignoring interaction contributions to energy measurements,
we obtain an adiabatic weak-coupling form

pS (X? t) S ‘Cad (X? t)pS (X7 t)

Albash et al., New J. Phys. 14 123016 (2012)
F. Liu, Phys. Rev. E 90, 032121 (2014)



Moving beyond weak coupling: solid-state
quantum optics

How do we modify standard quantum optics to

model solid-state devices? emission

* e.g. what effect do lattice vibrations (phonons)
have on system properties?

Model

* two-level system

* coherent manipulations through external laser
addressing (adiabatic)

« excitation of single electron from valence to

A/2

s

conduction band
« oscillations damped by phonon interactions

Hg(t) = w—az - () =4 o e Ll )
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R. Oulton, Nature Nano. 9, 169 (2014)
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Lattice displaces in response to changes

Phonon interactions

in charge configuration

polaron formation — new boundary
we incorporate this physics into our
master equation via a unitary
transformation

allows strong electron-phonon

interactions
direct expt-theory comparisons

Hp = GSHQ_S

Topical Review: AN and D. P. S. McCutcheon, JPCM 28, 103002 (2016)



Lattice displaces in response to changes

Phonon interactions

in charge configuration
polaron formation — new boundary

we incorporate this physics into our

master equation via a unitary
transformation

allows strong electron-phonon
Interactions

direct expt-theory comparisons
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A.Brash et al., Phys. Rev. Let. 123,167403 (2019)

Hp = GSHQ_S

Topical Review: AN and D. P. S. McCutcheon, JPCM 28, 103002 (2016)



Phonon interactions

Lattice displaces in response to changes

in charge configuration

* polaron formation — new boundary

* we Incorporate this physics into our
master equation via a unitary
transformation

* allows strong electron-phonon
Interactions

« direct expt-theory comparisons

Damping of coherence

(b)ﬂ 1.0 ' ' o E>'<periment 1
Ko Polaron ME
S - - - Pure Dephasing
g 09} N .
c X Fine
8 o
o 08 %@ i
8 T . © 19} OOQE)O
T F -2 -1 0 p
L : F
Detuning (meV) o8 I
00 1 1 1
0.1 1 10 100 1000
Time 7 (ps)

A.Brash et al., Phys. Rev. Let. 123,167403 (2019)

Hp = GSHGB_S

Topical Review: AN and D. P. S. McCutcheon, JPCM 28, 103002 (2016)

Temp. dependence in resonance fluorescence
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Polaron transformation

We perform a unitary polaron transformation to our Hamiltonian to
identify a new perturbation term

Hp(t)=eSH(t)e™®, S=0.) (gr/we)(b} — bi)

This leads to a non-perturbative temperature and coupling strength
dependent renormalisation of system driving

1 1
Hpg(t) = §Vt0'z + §A/ﬂ7x, 0<k<1

System now couples through raising and lowering operators to environmental
displacements.

Following the same adiabatic, Markovian procedure in the polaron frame we
obtain a generalised polaron mater equation

pPS (Xa t) i £an (X? t)pPS (X7 t)



Benchmarking — Landau-Zener
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Work distributions
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Effects of renormalisation

Probability density

Probability density
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Peak positions incorrectly
independent of coupling strength in
weak-coupling theory

Polaron theory captures
renormalisation of the energy gap,
leading to peak shifts



Work average and variance
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Weak-coupling theory tends to underestimate the average work done
and its variance, except at very small couplings




Summary and future work

Polaron transformation Adiabatic work probability distribution

arXiv:2302.08395

Ongoing

- How do we probe these work distributions experimentally?
- Extension to non-adiabatic, periodically driven systems

- Shortcuts to adiabaticity

- Reaction coordinates and other non-perturbative theories
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Aside: Heat

Heat can be characterised in a similar manner
« Consider projective energy measurements performed only on the
(static) environment

p(0) p(t)
@ 5 @
HB HB




