

CFD Capability for Urban Environments

Southampton Team: Cung Nguyen, Davide Lasagna, Zhengtong Xie

City of London, December 2019

Southampton Building and boundary layer interaction in neutral and non-neutral stratification

Sessa et al (2018, 2019)

Growing internal boundary layer from the leading edge (first row of buildings)

Line source dispersion across the blocks

Southampton

Flow around tall buildings in west wind: Barbican buildings (from a BEng project)

Comparison of pressure coefficient at 2/3H for Lauderdale Tower

7

CFD for very complex urban geometry:

Domain of University of Southampton, Highfield (Coburn et al, 2018), using OpenFOAM

• Data taken on the y=104m streamwise-vertical plane, with vertical profiles at 14 locations starting from x = 220m (13.3h) at a 40m interval ($\Delta x = 2.5h$)

PIV, CFD comparison (with flat ground)

- (a)
 - Exp Camera 2 (Red),
 Exp Camera 1 (Blue)
 - CFD (Black)
- (b) & (c)
 - Exp (Squares)
 - CFD (Black)

Modelling City of London, using PALM

(a) CFD domain of the City of London with Barbican (red ellipse, BC) and Gherkin (red circle, GC) TB clusters. (b) Low-speed wake regions downstream of TBs at z=114m (instantaneous streamwise velocity). Flow left to right

Southampton

Conclusion

- We have started FUTURE
-