Dr Yuheng Du


Postgraduate Research Student

Academic and research departments

School of Mechanical Engineering Sciences.

Publications

Yuheng Du, Shuang Li, Michael Pekris, Wei Li, Guohong Tian (2023)Surrogate-Assisted Multi-Objective Optimisation of Transcritical Carbon Dioxide Scroll Expander Flank Clearance Based on Computational Fluid Dynamics, In: Energies (Basel)16(14) MDPI AG

Transcritical carbon dioxide waste heat recovery systems and the construction of scroll expanders have recently been hot topics. The flank clearance, located between the orbiting and fixed scroll, has a vital impact on the scroll expander performance. This paper estimates the effect of the flank clearance on the expander’s thermodynamic performance (first-law efficiency) based on computational fluid dynamics (CFD) simulations. The manufacturing cost of different flank clearances is also considered to enhance the feasibility of the machinery design. The computational cost for different flank clearance cases is significantly reduced with a surrogate-assisted multi-objective optimisation algorithm (SAMOA), which also supports modelling the trade-off relationship between manufacturing cost and machinery efficiency. The results indicated that an increasing flank clearance negatively affects the first-law thermal efficiency. The efficiency decreased from 87.41% to 44.83% moving from 20 to 200 μm flank clearances. The SAMOA successfully reduced the computational cost of the dynamic mesh CFD model from 90 h to 15 s with 0.6% discrepancy. The final Pareto solutions presented a clear trade-off relationship between the first-law efficiency and manufacturing cost and promised a diversity of optimum solutions. The “knee points” for the relationship were 25, 55, and 127 μm, which provided flexible clearance choices based on the importance of either machinery efficiency or manufacturing cost.

Recent developments in the field of renewable energy have led to a renewed interest in low-grade heat (< 500 K). The low-grade heat is widely wasted by the lack of efficient heat recovery technologies. It is also limited by the system size, which defines as the micro to small-scale (< 50 kW). Although ORC based unit has been implemented in this field, the CO2 based waste heat recovery units can be more capable in the size construction. The performance of the expander plays a vital role in the system's efficiency. Thus, the current paper provides thermodynamic and CFD analysis of a scroll expander regarding a micro-scale T-CO2 recovery system (< 10 kW) with a 400 K low-grade heat source. In the current CFD model, all the fluid domains were constructed by structural mesh. It also successfully integrated with the thermodynamic table to simulate two-phase T-CO2. This model can be the first scroll expander model for T-CO2 power system and gap the bridge of utilising the scroll machinery in this field. The CFD methodology was successfully validated by the new-built testing platform and previous data. The energy performance of T-CO2 and ORC (R123) based scroll expanders are compared by isentropic and exergy efficiency. The results showed that isentropic and exergy efficiencies of T-CO2 were 7% and 14% higher than the R123. It also identified higher irreversibilities of T-CO2 by the exergy of the working fluids. The pressure and temperature distributions identified the over-expansion and reversed flow characteristics, and the pressure imbalance of the initial expansion chambers denoted the reversed flow.

Yuheng Du, Michael Pekris, Guohong Tian CFD analysis of flank clearance sizes on micro-scale transcritical CO2 scroll expander, In: Applied thermal engineering Elsevier Ltd

The scroll-type expander can be the promising candidate for micro-scale (

Yuheng Du, Guohong Tian, Michael Pekris (2022)A comprehensive review of micro-scale expanders for carbon dioxide related power and refrigeration cycles, In: Applied thermal engineering201(A)117722

In recent decades, the carbon dioxide cycles, including supercritical carbon dioxide cycle, transcritical carbon dioxide Rankine cycle and refrigeration cycle, have been proven effective due to the high efficiency and compact structure, and received increasing interests. The performance of the expander in the power cycles, particularly in micro-scale applications, is one of the essential components that determine the cycle performance and still remains a significant challenge. This paper presents a critical overview of micro-scale (