Dr Tim Sidnell
Academic and research departments
School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences.About
My research project
Ultrasonic degradation of per- and polyfluoroalkyl substancesPer- and polyfluoroalkyl substances (PFASs) comprise ultra-persistent, highly mobile and bioaccumulative pollutants that contaminate water sources. These chemicals are highly stable and very difficult to destroy. They can accumulate in soilds, people and crops, leading to health problems.
Supervisors
Per- and polyfluoroalkyl substances (PFASs) comprise ultra-persistent, highly mobile and bioaccumulative pollutants that contaminate water sources. These chemicals are highly stable and very difficult to destroy. They can accumulate in soilds, people and crops, leading to health problems.
ResearchResearch interests
Ultrasonics, sonochemistry, water treatment
Research interests
Ultrasonics, sonochemistry, water treatment
Publications
Sonolysis has been proposed as a promising treatment technology to remove per- and polyfluoroalkyl substances (PFASs) from contaminated water. The mechanism of degradation is generally accepted to be high temperature pyrolysis at the bubble surface with dependency upon surface reaction site availability. However, the parametric effects of the ultrasonic system on PFAS degradation are poorly understood, making upscale challenging and leading to less than optimal use of ultrasonic energy. Hence, a thorough understanding of these parametric effects could lead to improved efficiency and commercial viability. Here, reactor characterisation was performed at 44, 400, 500 and 1000 kHz using potassium iodide (KI) dosimetry, sonochemiluminescence (SCL), and sonoluminescence (SL) in water and PFOS solution. Then the degradation of PFOS (10 mg / L in 200 mL solution) was investigated at these four frequencies. At 44 kHz, no PFOS degradation was observed. At 400, 500 and 1000 kHz the amount of degradation was 96.9, 93.8 and 91.2%, respectively, over four hours and was accompanied by stoichiometric fluoride release, indicating mineralisation of the PFOS molecule. Close correlation of PFOS degradation trends with KI dosimetry and SCL intensity was observed, which suggested degradation occurred under similar conditions to these sonochemical processes. At 1000 kHz, where the overall intensity of collapse was significantly reduced (measured by SL), PFOS degradation was not similarly decreased. Discussion is presented that suggests a solvated electron degradation mechanism for PFOS may occur in ultrasonic conditions.