Dr Parham Mostofizadeh


Postgraduate research student

Publications

Parham Mostofizadeh, Robert A. Dorey, Iman Mohagheghian (2025)Effect of Temperature Variation and 1 Strain Rate on the Mechanical Properties of Multi-material Lattice Structures 3, In: Materials and Design

Multi-material additive manufacturing has emerged as a promising avenue for the creation of innovative metamaterials including multi-material lattices with unique characteristics. This paper presents the examination of the impacts of varying loading rate and temperature on the mechanical properties of such lattice structures. The primary objective is to enhance understanding of how manipulating materials' configurations within multi-material lattices (by employing materials with different strain rate and temperature sensitivities) affects overall mechanical characteristics. The multi-material design was found to provide a broader and more tunable range of properties, e.g. peak stress increase of over 80% with changing strain rate from 10⁻⁴ to 10⁻² s⁻¹ in comparison to a 30% increase for the single material design and a 96% drop in peak stress, compared to an 84% decrease for the single-material design when temperature changing from 27°C to 50°C. Results indicate that through multi-material design, post-elastic deformation can be finely tuned for specific application requirements, whether necessitating high stiffness or high energy absorption. Moreover, it is observed that the global strain rate sensitivity of the multi-material lattice is influenced not only by the intrinsic sensitivity of constituent materials but also by changes in local stress and strain distribution as the rate increases. 

Parham Mostofizadeh, Robert Dorey, Iman Mohagheghian (2024)Active Stiffness Tuning of Lattice Metamaterials, In: Smart materials and structures IOP

In this paper, surface conductive heating was utilized to actively control the stiffness of lattice metamaterials manufactured employing multi-material 3D printing. To create an electrical surface conduction, additively manufactured samples in single and dual material configurations were dip coated in a solution of carbon black in water. Electro-thermo-mechanical tests conducted successfully demonstrated that the low-cost conductive coating can be used to actively alter the stiffness of the structure through surface joule heating. The process was found to result in repeatable and reproduceable stiffness tuning. Stiffness reductions of 56% and 94% were demonstrated for single and dual material configurations under the same electrical loading. The proposed methodology can be implemented to actively control the properties of polymeric lattice materials/structures where the change in the composition of polymers (introduce bulk electrical conductivity) is difficult and can have a wide range of applications in soft robotics, shape-changing, and deployable structures. 

Parham Mostofizadeh, Robert Dorey, Iman Mohagheghian (2024)Elastic Properties Prediction of Two- and Three-Dimensional Multi-Material Lattices, In: Thin-walled structures [e-journal]201112015 Elsevier Ltd

Advances in multi-material additive manufacturing have opened unprecedented new opportunities for the design and manufacture of lightweight multifunctional structures. The ability to create complex topologies, at a relatively fine resolution, in addition to controlling the material composition on a voxel basis have significantly expanded the design space. To explore this large design space efficiently, accurate and cost-effective modeling tools are essential. In this paper, mechanics-based models for predicting the elastic properties of multi-material 2D and 3D lattice structures are developed or extended. The outcomes are compared with the predictions obtained from finite element models and experimental data. The results reveal that the adapted analytical models demonstrate good accuracy in predicting the elastic modulus of multi-material lattices for relative densities up to approximately 25% while have considerably less computational cost compared to finite element using solid elements (providing the most accurate results in comparison with experiment). Careful consideration of the accuracy of the predictions is necessary for the use of these models for lattices with high relative density values. Besides, several homogenization-based models were studied to investigate their applicability to multi-material lattice structures when the assumption of scale-separation is considered valid. The capability of these models in predicting the whole elasticity tensor and the potential of multi-material lattices in manipulating the anisotropy are demonstrated. Finally, the introduced prediction frameworks are compared in order to provide an overview of their respective advantages and disadvantages in the case of multi-material lattice structures.