Dr Loukia Pantzechroula Merkouri
About
My research project
Switchable Dual Functional Materials: a new generation of CO2 capture-conversionThe growing trend of carbon dioxide (CO2) emissions driven by the increase of global energy consumption makes mandatory a commitment of the scientific community to investigate routes for CO2 valorisation. The transformation of CO2 into valuable fuels and chemicals, or chemical recycling, is the most desired but at the same time the most challenging solution to combat CO2 emissions. Indeed, CO2 is a highly stable molecule, thus making difficult its conversion under normal conditions.
In this project different chemical processes that can use CO2 as a carbon pool are studied. Advanced catalytic materials able to catalyse more than one reaction efficiently are needed within the CO2 utilisation schemes to benefit from end-products flexibility. Additionally, dual functional materials that enable both the capture and conversion of CO2 into carbon negative chemicals are studied. Synthesis, characterisation and testing of heterogenous catalysts are the main aspects of the project.
Supervisors
The growing trend of carbon dioxide (CO2) emissions driven by the increase of global energy consumption makes mandatory a commitment of the scientific community to investigate routes for CO2 valorisation. The transformation of CO2 into valuable fuels and chemicals, or chemical recycling, is the most desired but at the same time the most challenging solution to combat CO2 emissions. Indeed, CO2 is a highly stable molecule, thus making difficult its conversion under normal conditions.
In this project different chemical processes that can use CO2 as a carbon pool are studied. Advanced catalytic materials able to catalyse more than one reaction efficiently are needed within the CO2 utilisation schemes to benefit from end-products flexibility. Additionally, dual functional materials that enable both the capture and conversion of CO2 into carbon negative chemicals are studied. Synthesis, characterisation and testing of heterogenous catalysts are the main aspects of the project.
University roles and responsibilities
- Plant Manager - ENG3190 Process Operation and Management (Mar. - Apr. 2021, Feb. - Mar. 2022)
My qualifications
ResearchResearch interests
Loukia's research interests are focused on carbon dioxide recycling, and thus the development of innovative materials/catalysts, which will not only be able to capture carbon dioxide, but they will also convert it into valuable fuels and chemicals. Her aim is to develop active catalysts for the following applications:
- End-products flexibility in CO2 utilisation schemes (switchable catalysts)
- Combined carbon dioxide capture and utilisation (dual functional materials)
Research interests
Loukia's research interests are focused on carbon dioxide recycling, and thus the development of innovative materials/catalysts, which will not only be able to capture carbon dioxide, but they will also convert it into valuable fuels and chemicals. Her aim is to develop active catalysts for the following applications:
- End-products flexibility in CO2 utilisation schemes (switchable catalysts)
- Combined carbon dioxide capture and utilisation (dual functional materials)
Publications
Innovating technologies to efficiently reduce carbon dioxide (CO2) emission or covert it into useful products has never been more crucial in light of the urgent need to transition to a net-zero economy by 2050. The design of efficient catalysts that can make the above a viable solution is of essence. Many noble metal catalysts already display high activity, but are usually expensive. Thus alternative methods for their production are necessary to ensure more efficient use of noble metals. Exsolution has been shown to be an approach to produce strained nanoparticles, stable against agglomeration while displaying enhanced activity. Here we explore the effect of a low level of substitution of Ni into a Rh based A-site deficient titanate aiming to investigate the formation of more efficient, low loading noble metal catalysts. We show that this design principle not only fulfils a major research need in the conversion of CO2 but also provides a step-change advancement in the design and synthesis of tandem catalysts by the formation of distinct catalytically active sites.
In this study, we used fermentation off-gases from a brewery for integrated CO2 capture and utilisation in order to produce CH4 with a dual-function material (DFM) containing NiRu as catalyst and dispersed CaO as adsorbent. CH4 was produced from captured CO2 via 2 pathways (fast and slow), proceeding through formyl intermediates according to the operando DRIFTS-MS results. The NiRuCa DFM showed a stable CH4 capacity over 8 cycles (105 μmol/gDFM) with fermentation off-gases being used as a CO2 capture feed. H2O and O2, which were present in small amounts in the emissions feed, resulted in the passivation of Ni in the form of a NiO layer that protected the DFM from excessive oxidation and deactivation. This work constitutes a first in terms of validating the use of DFMs with real industrial emissions, and it directly correlates the DFM activity performance with its reaction mechanism and intermediate species.Those are the data generated for our collaborative project with Spain. All the data are given in excel files except of some figures that are png format. The uploaded data also include the data used in the supplementary information and those figures and tables are denoted with an 'S' before the number. The data include the activity data of a sample under real conditions, its reaction mechanism under ideal and realistic conditions, and its physiochemical characterisation.
Dual function materials (DFMs) are key for the integrated capture of CO2 from waste gas streams and its valorisation to valuable chemicals, such as syngas. To be able to function in commercial applications, DFMs require both high capture capacity and catalytic activity, achieved by optimising the synergistic interactions among the catalytic metals, support and adsorbent components. To obtain increased interaction, the dry milling process can be used as a sustainable, solvent free, green synthesis method. In this work, we report the performance of RuNi bimetallic DFMs supported on CeO2-Al2O3 and promoted with CaO and Na2O, synthesised by a mild-energy mechano-chemical process. The materials show superior capture capacity and increased activity in Reverse Water-Gas Shift reaction (RWGS) for CO production at 650 °C compared to their counterpart prepared by a conventional impregnation method. High activity and stability are also maintained when O2 is present in the capture step, indicating potential for real exhaust-gases capture applications. Also, direct air capture of CO2 is reported, further underlining the benefits of the dry milling approach for creating versatile DFMs.Those are the data generated for our collaborative project with Italy. All the data are given in excel files except of two figures with png format. The uploaded data also include the data used in the supplementary information and those figures and table are denoted with an 'S' before the number. The data include the physiochemical characterisation of ten (or nine) different samples and their activity performance under ideal and realistic conditions.
In this study, we used fermentation off-gases from a brewery for integrated CO2 capture and utilisation in order to produce CH4 with a dual-function material (DFM) containing NiRu as catalyst and dispersed CaO as adsorbent. CH4 was produced from captured CO2 via 2 pathways (fast and slow), proceeding through formyl intermediates according to the operando DRIFTS-MS results. The NiRuCa DFM showed a stable CH4 capacity over 8 cycles (105 μmol/gDFM) with fermentation off-gases being used as a CO2 capture feed. H2O and O2, which were present in small amounts in the emissions feed, resulted in the passivation of Ni in the form of a NiO layer and hence, the DFM did not undergo excessive oxidation and deactivation. This work constitutes a first in terms of validating the use of DFMs with real industrial emissions, and it directly correlates the DFM activity performance with its reaction mechanism and intermediate species. [Display omitted] •The operation of a DFM is demonstrated using real CO2 emissions from a microbrewery.•Operando DRIFTS shows that CH4 is produced via a fast and a slow reaction pathway.•During operation a passivating NiO layer forms and protects the DFM from excessive oxidation.
The oil and gas sector produces a considerable volume of greenhouse gas emissions, mainly generated from flaring and venting natural gas. Herein, a techno-economic analysis has been performed of a switchable catalytic process to convert the CH4 and CO2 in flared/vented natural gas into syngas or methanol. Specifically, it was shown that depending on greenhouse gas composition, dry methane reforming (DRM), reverse water-gas shift (RWGS), and CO2 methanation could be chosen to valorise emissions in an overall profitable and flexible operation scenario. The switchable process produced methanol and synthetic natural gas as its products, resulting in an annual income of euro687m and annual operating expenses of euro452m. The pre-tax profit was calculated at euro234m, and at the end of the project, the net present value was calculated as euro1.9b with a profitability index of 4.7euro/euro. The expected payback time of this process was ca. 4 years, and with a 35% internal rate of return (IRR). Most importantly, this process consumed 42.8m tonnes of CO2 annually. The sensitivity analysis revealed that variations in operation time, green hydrogen price, and products' prices significantly impacted the profitability of the process. Overall, this techno-economic analysis demonstrated that switchable catalysis in greenhouse gas utilisation processes is profitable, and thus it could play an important role in achieving net zero emissions.
Time-resolved operando DRIFTS-MS was performed to elucidate the CO2 capture and conversion mechanisms of a NiRuNa/CeAl DFM in CO2 methanation, reverse water-gas shift, and dry reforming of methane. CO2 was captured mainly in the form of carbonyls and bidentate carbonates, and a spillover mechanism occurred to obtain the desired products.
Carbon dioxide (CO2) can be used as a C1 building block for the production of fuels and chemicals. The use of catalysts in the decarbonization of CO2-rich industries via the utilization of CO2 is fundamental. Herein, the aim of this chapter is to describe the catalytic upgrading of CO2-rich industrial flue gases. Initially, the CO2 capture technologies including precombustion, postcombustion, and oxyfuel are discussed. In addition, the industries producing CO2-rich streams which are cement, steel and iron, biogas, and brewery are described. Moreover, the effect of impurities during CO2 capture and conversion into high-value chemicals and fuels are examined. Finally, the reaction pathways during which CO2 is converted into added-value fuels and chemicals are explained by emphasizing the desirable catalytic characteristics and the current catalytic limitations.
Nickel phosphide catalysts show a high level of selectivity for the reverse water-gas shift (RWGS) reaction, inhibiting the competing methanation reaction. This work investigates the extent to which suppression of methanation can be controlled by phosphidation and tests the stability of phosphide phases over 24-hour time on stream. Herein the synthesis of different phosphide crystal structures by varying Ni/P atomic ratios (from 0.5 to 2.4) is shown to affect the selectivity to CO over CH 4 in a significant way. We also show that the activity of these catalysts can be fine-tuned by the synthesis Ni/P ratio and identify suitable catalysts for low temperature RWGS process. Ni 12 P 5-SiO 2 showed 80–100% selectivity over the full temperature range (i.e., 300–800 • C) tested, reaching 73% CO 2 conversion at 800 • C. Ni 2 P-SiO 2 exhibited CO selectivity of 93–100% over a full temperature range, and 70% CO 2 conversion at 800 • C. The highest CO 2 conversions for Ni 12 P 5-SiO 2 at all temperatures among all catalysts showed its promising nature for CO 2 capture and utilisation. The methanation reaction was suppressed in addition to RWGS activity improvement through the formation of nickel phosphide phases, and the crystal structure was found to determine CO selectivity, with the following order Ni 12 P 5 >Ni 2 P > Ni 3 P. Based on the activity of the studied catalysts, the catalysts were ranked in order of suitability for the RWGS reaction as follows: Ni 12 P 5-SiO 2 (Ni/P = 2.4) > Ni 2 P-SiO 2 (Ni/P = 2) > NiP-SiO 2 (Ni/P = 1) > NiP 2-SiO 2 (Ni/P = 0.5). Two catalysts with Ni/P atomic ratios; 2.4 and 2, were selected for stability testing. The catalyst with Ni/P ratio = 2.4 (i.e., Ni 12 P 5-SiO 2) was found to be more stable in terms of CO 2 conversion and CO yield over the 24-hour duration at 550 • C. Using the phosphidation strategy to tune both selectivity and activity of Ni catalysts for RWGS, methanation as a competing reaction is shown to be no longer a critical issue in the RWGS process for catalysts with high Ni/P atomic ratios (2.4 and 2) even at lower temperatures (300–500 • C). This opens up potential low temperature RWGS opportunities, especially coupled to downstream or tandem lower temperature processes to produce liquid fuels.
Introduction: Innovating technologies to efficiently reduce carbon dioxide (CO2) emission or covert it into useful products has never been more crucial in light of the urgent need to transition to a net-zero economy by 2050. The design of efficient catalysts that can make the above a viable solution is of essence. Many noble metal catalysts already display high activity, but are usually expensive. Thus, alternative methods for their production are necessary to ensure more efficient use of noble metals. Methods: Exsolution has been shown to be an approach to produce strained nanoparticles, stable against agglomeration while displaying enhanced activity. Here we explore the effect of a low level of substitution of Ni into a Rh based A-site deficienttitanate aiming to investigate the formation of more efficient, low loading noblemetal catalysts. Results: We find that with the addition of Ni in a Rh based titanate exsolution is increased by up to ∼4 times in terms of particle population which in turn results in up to 50% increase in its catalytic activity for CO2 conversion. Discussion: We show that this design principle not only fulfills a major research need in the conversion of CO2 but also provides a step-change advancement in the design and synthesis of tandem catalysts by the formation of distinct catalytically active sites.
The use of fossil fuels is primarily responsible for the increasing amounts of greenhouse gas emissions in the atmosphere and, unless this issue is quickly addressed, the effects of global warming will worsen. Synthesis gas (syngas) is an attractive target chemical for carbon capture and utilisation and dry reforming of methane (DRM) enables the conversion of methane (CH4) and CO2, the two most abundant greenhouse gases, to syngas. This paper presents a techno-economic analysis of a syngas-to-dimethyl ether (DME) process, by utilising landfill gas as feedstock. The process developed herein produces DME, methanol and high-pressure steam as products, resulting in an annual income of €3.49 m and annual operating expenses of €1.012 m. Operating profit was calculated to be €2.317 m per year and the net present value (NPV) was €11.70 m at the end of the project’s 20-year lifespan with a profitability index of 0.83€/€. The process was expected to have a payback time of approximately 10 years and an internal rate of return of 12.47%. A key aspect of this process was CO2 utilisation, which consumed 196,387 tonnes of CO2 annually. The techno-economic analysis conducted in this paper illustrates that greenhouse gas utilisation processes are currently feasible both in terms of CO2 consumption and profitability.
Since climate change keeps escalating, it is imperative that the increasing CO2 emissions be combated. Over recent years, research efforts have been aiming for the design and optimization of materials for CO2 capture and conversion to enable a circular economy. The uncertainties in the energy sector and the variations in supply and demand place an additional burden on the commercialization and implementation of these carbon capture and utilization technologies. Therefore, the scientific community needs to think out of the box if it is to find solutions to mitigate the effects of climate change. Flexible chemical synthesis can pave the way for tackling market uncertainties. The materials for flexible chemical synthesis function under a dynamic operation, and thus, they need to be studied as such. Dual-function materials are an emerging group of dynamic catalytic materials that integrate the CO2 capture and conversion steps. Hence, they can be used to allow some flexibility in the production of chemicals as a response to the changing energy sector. This Perspective highlights the necessity of flexible chemical synthesis by focusing on understanding the catalytic characteristics under a dynamic operation and by discussing the requirements for the optimization of materials at the nanoscale.
The feasibility of a Dual Function Material (DFM) with a versatile catalyst offering switchable chemical synthesis from carbon dioxide (CO2), was demonstrated for the first time, showing evidence of the ability of these DFMs to passively capture CO2 directly from the air as well. These DFMs open up possibilities in flexible chemical production from dilute sources of CO2, through a combination of CO2 adsorption and subsequent chemical transformation (methanation, reverse water gas shift or dry reforming of methane). Combinations of Ni Ru bimetallic catalyst with Na2O, K2O or CaO adsorbent were supported on CeO2 – Al2O3 to develop flexible DFMs. The designed multicomponent materials were shown to reversibly adsorb CO2 between the 350 and 650oC temperature range and were easily regenerated by an inert gas purge stream. The components of the flexible DFMs showed a high degree of interaction with each other, which evidently enhanced their CO2 capture performance ranging from 0.14 to 0.49 mol/kg. It was shown that captured CO2 could be converted into useful products through either CO2 methanation, reverse water-gas shift (RWGS) or dry reforming of methane (DRM), which provides flexibility in terms of co-reactant (hydrogen vs methane) and end product (synthetic natural gas, syngas or CO) by adjusting reaction conditions. The best DFM was the one containing CaO, producing 104 μmol of CH4/kgDFM in CO2 methanation, 58 μmol of CO/kgDFM in RWGS and 338 μmol of CO/kgDFM in DRM.
Carbon dioxide (CO2) is one of the most harmful greenhouse gases and it is the main contributor to climate change. Its emissions have been constantly increasing over the years due to anthropogenic activities. Therefore, efforts are being made to mitigate emissions through carbon capture and storage (CCS). An alternative solution is to close the carbon cycle by utilising the carbon in CO2 as a building block for chemicals synthesis in a CO2 recycling approach that is called carbon capture and utilisation (CCU). Dual Function Materials (DFMs) are combinations of adsorbent and catalyst capable of both capturing CO2 and converting it to fuels and chemicals, in the same reactor with the help of a co-reactant. This innovative strategy has attracted attention in the past few years given its potential to lead to more efficient synthesis through the direct conversion of adsorbed CO2. DFM applications for both post combustion CCU and direct air capture (DAC) and utilisation have been demonstrated to date. In this review, we present the unique role DFMs can play in a net zero future by first providing background on types of CCU methods of varying technological maturity. Then, we present the developed applications of DFMs such as the synthesis of methane and syngas. To better guide future research efforts, we place an emphasis on the connection between DFM physiochemical properties and performance. Lastly, we discuss the challenges and opportunities of DFM development and recommend research directions for taking advantage of their unique advantages in a low-carbon circular economy.
The increasing anthropogenic emissions of greenhouse gases (GHG) is encouraging extensive research in CO2 utilisation. Dry reforming of methane (DRM) depicts a viable strategy to convert both CO2 and CH4 into syngas, a worthwhile chemical intermediate. Among the different active phases for DRM, the use of nickel as catalyst is economically favourable, but typically deactivates due to sintering and carbon deposition. The stabilisation of Ni at different loadings in cerium zirconate inorganic complex structures is investigated in this work as strategy to develop robust Ni-based DRM catalysts. XRD and TPR-H2 analyses confirmed the existence of different phases according to the Ni loading in these materials. Besides, superficial Ni is observed as well as the existence of a CeNiO3 perovskite structure. The catalytic activity was tested, proving that 10 wt.% Ni loading is the optimum which maximises conversion. This catalyst was also tested in long-term stability experiments at 600 and 800°C in order to study the potential deactivation issues at two different temperatures. At 600°C, carbon formation is the main cause of catalytic deactivation, whereas a robust stability is shown at 800°C, observing no sintering of the active phase evidencing the success of this strategy rendering a new family of economically appealing CO2 and biogas mixtures upgrading catalysts. [Display omitted]
Silica-supported nickel phosphide catalysts with varying Ni/P atomic ratios (12/5, 2, 1, and 0.5) and 15 wt.% Ni-loading are synthesized. The synthesized catalysts are calcined and subjected to Temperature Programmed Reduction (TPR) analysis to evaluate Hydrogen consumption. Pre-reaction X-ray diffraction (XRD) analysis is performed on all calcined samples after reduction and passivation. The reduced catalysts are tested for the reverse water-gas shift reaction and post-reaction XRD analysis is performed on them. Stability tests are conducted on catalysts with Ni/P atomic ratios of 12/5 and 2, followed by XRD analysis of post-stability samples. The elemental composition of the catalysts at each stage is evaluated via inductively coupled plasma mass spectroscopy (ICP-MS) analysis. All experimental data is made available for re-use through this platform.
CO2 emissions in the atmosphere have been increasing rapidly in recent years, causing global warming. CO2 methanation reaction is deemed to be a way to combat these emissions by converting CO2 into synthetic natural gas, i.e., CH4. NiRu/CeAl and NiRu/CeZr both demonstrated favourable activity for CO2 methanation, with NiRu/CeAl approaching equilibrium conversion at 350 °C with 100% CH4 selectivity. Its stability under high space velocity (400 L·g−1·h−1) was also commendable. By adding an adsorbent, potassium, the CO2 adsorption capability of NiRu/CeAl was boosted, allowing it to function as a dual-function material (DFM) for integrated CO2 capture and utilisation, producing 0.264 mol of CH4/kg of sample from captured CO2. Furthermore, time-resolved operando DRIFTS-MS measurements were performed to gain insights into the process mechanism. The obtained results demonstrate that CO2 was captured on basic sites and was also dissociated on metallic sites in such a way that during the reduction step, methane was produced by two different pathways. This study reveals that by adding an adsorbent to the formulation of an effective NiRu methanation catalyst, advanced dual-function materials can be designed.
Advanced catalytic materials able to catalyse more than one reaction efficiently are needed within the CO2 utilisation schemes to benefit from end-products flexibility. In this study, the combination of Ni and Ru (15 and 1 wt%, respectively) was tested in three reactions, i.e. dry reforming of methane (DRM), reverse water-gas shift (RWGS) and CO2 methanation. A stability experiment with one cycle of CO2 methanation-RWGS-DRM was carried out. Outstanding stability was revealed for the CO2 hydrogenation reactions and as regards the DRM, coke formation started after 10 h on stream. Overall, this research showcases that a multicomponent Ni-Ru/CeO2 -Al2O3 catalyst is an unprecedent versatile system for gas phase CO2 recycling. Beyond its excellent performance, our switchable catalyst allows a fine control of end-products selectivity.
Dry reforming of methane (DRM) represents an alluring approach to the direct conversion of CO2 and CH4, gases with the highest global warming potential, into syngas, a value-added intermediate used in chemical industry. In this study, mixed oxide structures of cerium and zirconium doped with 10 wt% Ni were used due to the high thermal stability. This study showcased the importance of choosing suitable conditions and explored the impact of calcination temperature on Ce–Zr mixed oxides with Ni. XRD analysis confirmed the existence of different crystalline phases according to the calcination temperature. Redox characterisation showed a trade-off among calcination temperature, the dispersion of Ni clusters and its interaction with the support structure. Calcined catalysts at 900 and 1000 °C underwent harsh, long-term DRM conditions. Despite the low surface area of the designed catalysts, the stability experiments proved a relation between dispersion of Ni active phase and catalytic performance, showing an optimum calcination temperature of 1000 °C.