Dr Johanna von Gerichten
Academic and research departments
Faculty of Engineering and Physical Sciences, School of Chemistry and Chemical Engineering.About
University roles and responsibilities
- Member of the Athena Swan Implementation Comitee (ASIC)
- Member of the PMB MRC IAA and HEIF panel
My qualifications
Previous roles
Affiliations and memberships
News
In the media
ResearchResearch interests
My research interests are very broadly in lipid metabolism and mass spectrometry method development.
Research projects
Multimodal imaging of biological tissues - method developmentI'm working on multiple projects that investigate the feasibility of combining different mass spectrometry imaging techniques such as MALDI, DESI and SIMS with spectroscopy techniques such as Raman and ion beam analysis techniques such as PIXE. The focus here is to combine techniques with single-cell and/or sub-micron spatial resolution to study disease models such as tuberculosis infection, eye disease and skin absorption.
Developing methods for single-cell lipidomics using LC-MSCapillary single cell sampling uses microscopy and glass capillaries to select single living cells in their native environment with the spatial information retained. Combining this potential with lipidomics allows for morphology informed selection of cells and corresponding information about the metabolic state to, for example, study radiation induced bystander effects.
Research interests
My research interests are very broadly in lipid metabolism and mass spectrometry method development.
Research projects
I'm working on multiple projects that investigate the feasibility of combining different mass spectrometry imaging techniques such as MALDI, DESI and SIMS with spectroscopy techniques such as Raman and ion beam analysis techniques such as PIXE. The focus here is to combine techniques with single-cell and/or sub-micron spatial resolution to study disease models such as tuberculosis infection, eye disease and skin absorption.
Capillary single cell sampling uses microscopy and glass capillaries to select single living cells in their native environment with the spatial information retained. Combining this potential with lipidomics allows for morphology informed selection of cells and corresponding information about the metabolic state to, for example, study radiation induced bystander effects.
Supervision
Postgraduate research supervision
Co-supervisor of two PhD students. Project (1) Radiation induced bystander effects in single pancreatic cancer cells monitored via lipidomics. Project (2) Studying organ-specific metabolic changes in zebrafish induced by nanoplastics with mass spectrometry imaging.
Publications
CD1d-restricted invariant natural killer T (iNKT) cells represent a heterogeneous population of lipid-reactive T cells that are involved in many immune responses, mediated through T-cell receptor (TCR)–dependent and/or independent activation. Although numerous microbial lipid antigens (Ags) have been identified, several lines of evidence have suggested the existence of relevant Ags of endogenous origin. However, the identification of their precise nature as well as the molecular mechanisms involved in their generation are still highly controversial and ill defined. Here, we identified two mammalian gangliosides—namely monosialoganglioside GM3 and disialoganglioside GD3—as endogenous activators for mouse iNKT cells. These glycosphingolipids are found in Toll-like receptor-stimulated dendritic cells (DC) as several species varying in their N-acyl fatty chain composition. Interestingly, their ability to activate iNKT cells is highly dependent on the ceramide backbone structure. Thus, both synthetic GM3 and GD3 comprising a d18:1-C24:1 ceramide backbone were able to activate iNKT cells in a CD1d-dependent manner. GM3 and GD3 are not directly recognized by the iNKT TCR and required the Ag presenting cell intracellular machinery to reveal their antigenicity. We propose a new concept in which iNKT cells can rapidly respond to pre-existing self-molecules after stress-induced structural changes in CD1d-expressing cells. Moreover, these gangliosides conferred partial protection in the context of bacterial infection. Thus, this report identified new biologically relevant lipid self-Ags for iNKT cells.
To elucidate the physiologic function of renal globotriaosylceramide (Gb3/CD77), which up-to-date has been associated exclusively with Shiga toxin binding, we have analyzed renal function in Gb3-deficient mice. Gb3 synthase KO (Gb3S−/−) mice displayed an increased renal albumin and low molecular weight protein excretion compared to WT. Gb3 localized at the brush border and within vesicular structures in WT proximal tubules and has now been shown to be closely associated with the receptor complex megalin/cubilin and with albumin uptake. In two clinically relevant mouse models of acute kidney injury caused by myoglobin as seen in rhabdomyolysis and the aminoglycoside gentamicin, Gb3S−/− mice showed a preserved renal function and morphology, compared to WT. Pharmacologic inhibition of glucosylceramide-based glycosphingolipids, including Gb3, in WT mice corroborated the results of genetically Gb3-deficient mice. In conclusion, our data significantly advance the current knowledge on the physiologic and pathophysiologic role of Gb3 in proximal tubules, showing an involvement in the reabsorption of filtered albumin, myoglobin and the aminoglycoside gentamicin.
Alzheimer’s disease (AD) is characterized by progressive neurodegeneration and a concomitant loss of synapses and cognitive abilities. Recently, we have proposed that an alteration of neuronal membrane lipid microdomains increases neuronal resistance toward amyloid-β stress in cultured neurons and protects from neurodegeneration in a mouse model of AD. Lipid microdomains are highly enriched in a specific subclass of glycosphingolipids, termed gangliosides. The enzyme glucosylceramide synthase (GCS) catalyzes the rate-limiting step in the biosynthesis of these gangliosides. The present work now demonstrates that genetic GCS deletion in subsets of adult forebrain neurons significantly improves the spatial memory and counteracts the loss of dendritic spines in the hippocampal dentate gyrus of 5x familial AD mice (5xFAD//Ugcgf/f//Thy1-CreERT2//EYFP mice), when compared to 5xFAD//Ugcgf/f littermates (5xFAD mice). Aberrantly activated glial cells and their expression of pro-inflammatory cytokines have emerged as the major culprits for synaptic loss in AD. Typically, astrocytic activation is accompanied by a thickening of astrocytic processes, which impairs astrocytic support for neuronal synapses. In contrast to 5xFAD mice, 5xFAD//Ugcgf/f//Thy1-CreERT2//EYFP display a less pronounced thickening of astrocytic processes and a lower expression of tumor necrosis factor-α and interleukin 1-α in the hippocampus. Thus, this work further emphasizes that GCS inhibition may constitute a potential therapeutic target against AD.
Tay-Sachs disease is a severe lysosomal storage disorder caused by mutations in Hexa, the gene that encodes for the α subunit of lysosomal β-hexosaminidase A (HEXA), which converts GM2 to GM3 ganglioside. Unexpectedly, Hexa−/− mice have a normal lifespan and show no obvious neurological impairment until at least one year of age. These mice catabolize stored GM2 ganglioside using sialidase(s) to remove sialic acid and form the glycolipid GA2, which is further processed by β-hexosaminidase B. Therefore, the presence of the sialidase (s) allows the consequences of the Hexa defect to be bypassed. To determine if the sialidase NEU3 contributes to GM2 ganglioside degradation, we generated a mouse model with combined deficiencies of HEXA and NEU3. The Hexa−/− Neu3−/− mice were healthy at birth, but died at 1.5 to 4.5 months of age. Thin-layer chromatography and mass spectrometric analysis of the brains of Hexa−/− Neu3−/− mice revealed the abnormal accumulation of GM2 ganglioside. Histological and immunohistochemical analysis demonstrated cytoplasmic vacuolation in the neurons. Electron microscopic examination of the brain, kidneys and testes revealed pleomorphic inclusions of many small vesicles and complex lamellar structures. The Hexa−/− Neu3−/− mice exhibited progressive neurodegeneration with neuronal loss, Purkinje celldepletion, and astrogliosis. Slow movement, ataxia, and tremors were the prominent neurological abnormalities observed in these mice. Furthermore, radiographs revealed abnormalities in the skeletal bones of the Hexa−/− Neu3−/− mice. Thus, the Hexa−/− Neu3−/− mice mimic the neuropathological and clinical abnormalities of the classical early-onset Tay-Sachs patients, and provide a suitable model for the future pre-clinical testing of potential treatments for this condition.
Mammals synthesize, cell-type specifically, the diastereomeric hexosylceramides, -galactosylceramide (GalCer) and -glucosylceramide (GlcCer), which are involved in several diseases, such as sphingolipidosis, diabetes, chronic kidney diseases, or cancer. In contrast, Bacteroides fragilis, a member of the human gut microbiome, and the marine sponge, Agelas mauritianus, produce -GalCer, one of the most potent stimulators for invariant natural killer T cells. To dissect the contribution of these individual stereoisomers to pathologies, we established a novel hydrophilic interaction chromatography-based LC-MS2 method and separated (R > 1.5) corresponding diastereomers from each other, independent of their lipid anchors. Testing various bacterial and mammalian samples, we could separate, identify (including the lipid anchor composition), and quantify endogenous -GlcCer, -GalCer, and -GalCer isomers without additional derivatization steps. Thereby, we show a selective decrease of -GlcCers versus -GalCers in cell-specific models of GlcCer synthase-deficiency and an increase of specific -GlcCers due to loss of -glucoceramidase 2 activity. Vice versa, -GalCer increased specifically when cerebroside sulfotransferase (Gal3st1) was deleted. We further confirm -GalCer as substrate of globotriaosylceramide synthase for galabiaosylceramide synthesis and identify additional members of the human gut microbiome to contain immunogenic -GalCers. Finally, this method is shown to separate corresponding hexosylsphingosine standards, promoting its applicability in further investigations
Phospholipids have excellent biocompatibility and are therefore often used as main components of liposomal drug carriers. In traditional bioanalytics, the in-vivo distribution of liposomal drug carriers is assessed using radiolabeled liposomal constituents. This study presents matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) as an alternative, label-free method for ex-vivo molecular imaging of liposomal drug carriers in mouse tissue. To this end, indocyanine green as cargo and two liposomal markers, 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine conjugated with monodisperse polyethylene glycol (PEG36-DSPE) were incorporated into liposomal carriers and administered to mice. We used MALDI MSI of the two lipid markers in both positive and negative ion mode for visualization of liposome integrity and distribution in mouse organs. Additional MSI of hemoglobin in the same tissue slice and pixel-by-pixel computational analysis of co-occurrence of lipid markers and hemoglobin served as indicator of liposome localization either in parenchyma or in blood vessels. Our proof-of-concept study suggests that liposomal components and indocyanine green distributed into all investigated organs.
Impaired regulation of immune function characterised by chronic inflammation together with a declining protective immune response is a major challenge to healthy ageing. It is therefore important to understand the mechanisms that regulate immune function and the impact of ageing upon such processes. Appropriate induction and resolution of the immune response require adequate availability of polyunsaturated fatty acids (PUFAs) for incorporation into cell membranes. However, humans are unable to synthesise PUFAs de novo and are dependent upon dietary intake for pre-formed PUFAs or synthesis by the liver from the essential fatty acids, linoleic acid (LA, 18:2n-6) and alpha-linolenic acid (aLNA, 18:3n-3). We have shown that activation of peripheral blood mononuclear cells increases PUFA biosynthesis from essential fatty acids via a mechanism that involves altered epigenetic regulation of a key gene in the pathway. Moreover, induction of PUFA synthesis is directly involved in the regulation of lymphocyte activation and proliferation. The aim of the Biotechnology and Biological Sciences Research Council responsive mode award described in this paper, ‘How does polyunsaturated fatty acid biosynthesis regulate T-lymphocyte function?’, is to determine how PUFA biosynthesis regulates T-cell function and the effect of ageing on this process. The project will identify points of regulation in the biosynthetic pathway and how these might influence the capacity for up-regulation of PUFA synthesis in older individuals. We will use stable isotope tracers of LA and aLNA to determine whether newly synthesised PUFAs are preferential substrates for synthesis of lipid mediators and whether they are involved in formation of membrane microdomains that mediate cell signalling.
Longer-chain polyunsaturated fatty acids (LCPUFAs) ≥20 carbons long are required for leukocyte function. These can be obtained from the diet, but there is some evidence that leukocytes can convert essential fatty acids (EFAs) into LCPUFAs. We used stable isotope tracers to investigate LCPUFA biosynthesis and the effect of different EFA substrate ratios in human T lymphocytes. CD3+ T cells were incubated for up to 48 h with or without concanavalin A in media containing a 18:2n-6:18:3n-3 (EFA) ratio of either 5:1 or 8:1 and [13C]18:3n-3 plus [d5]18:2n-6. Mitogen stimulation increased the amounts of 16:1n-7, 18:1n-9, 18:2n-6, 20:3n-6, 20:4n-6, 18:3n-3, and 20:5n-3 in T cells. Expression of the activation marker CD69 preceded increased FADS2 and FADS1 mRNA expression and increased amounts of [d5]20:2n-6 and [13C]20:3n-3 at 48 h. In addition, 22-carbon n-6 or n-3 LCPUFA synthesis was not detected, consistent with the absence of ELOVL2 expression. An EFA ratio of 8:1 reduced 18:3n-3 conversion and enhanced 20:2n-6 synthesis compared to a 5:1 ratio. Here, [d5]9- and [d5]-13-hydroxyoctadecadienoic (HODE) and [13C]9- and [13C]13-hydroxyoctadecatrienoic acids (HOTrE) were the major labelled oxylipins in culture supernatants; labelled oxylipins ≥20 carbons were not detected. An EFA ratio of 8:1 suppressed 9- and 13-HOTrE synthesis, but there was no significant effect on 9- and 13-HODE synthesis. These findings suggest that partitioning of newly assimilated EFA between LCPUFA synthesis and hydroxyoctadecaenoic acid may be a metabolic branch point in T-cell EFA metabolism that has implications for understanding the effects of dietary fats on T lymphocyte function.
Identification of features with high levels of confidence in liquid chromatography–mass spectrometry (LC–MS) lipidomics research is an essential part of biomarker discovery, but existing software platforms can give inconsistent results, even from identical spectral data. This poses a clear challenge for reproducibility in biomarker identification. In this work, we illustrate the reproducibility gap for two open-access lipidomics platforms, MS DIAL and Lipostar, finding just 14.0% identification agreement when analyzing identical LC–MS spectra using default settings. Whilst the software platforms performed more consistently using fragmentation data, agreement was still only 36.1% for MS2 spectra. This highlights the critical importance of validation across positive and negative LC–MS modes, as well as the manual curation of spectra and lipidomics software outputs, in order to reduce identification errors caused by closely related lipids and co-elution issues. This curation process can be supplemented by data-driven outlier detection in assessing spectral outputs, which is demonstrated here using a novel machine learning approach based on support vector machine regression combined with leave-one-out cross-validation. These steps are essential to reduce the frequency of false positive identifications and close the reproducibility gap, including between software platforms, which, for downstream users such as bioinformaticians and clinicians, can be an underappreciated source of biomarker identification errors.
We report the development and validation of an untargeted single-cell lipidomics method based on microflow chromatography coupled to a data-dependent mass spectrometry method for fragmentation-based identification of lipids. Given the absence of single-cell lipid standards, we show how the methodology should be optimized and validated using a dilute cell extract. The methodology is applied to dilute pancreatic cancer and macrophage cell extracts and standards to demonstrate the sensitivity requirements for confident assignment of lipids and classification of the cell type at the single-cell level. The method is then coupled to a system that can provide automated sampling of live, single cells into capillaries under microscope observation. This workflow retains the spatial information and morphology of cells during sampling and highlights the heterogeneity in lipid profiles observed at the single-cell level. The workflow is applied to show changes in single-cell lipid profiles as a response to oxidative stress, coinciding with expanded lipid droplets. This demonstrates that the workflow is sufficiently sensitive to observing changes in lipid profiles in response to a biological stimulus. Understanding how lipids vary in single cells will inform future research into a multitude of biological processes as lipids play important roles in structural, biophysical, energy storage, and signaling functions.
This work describes the development of a new approach to measure drug levels and lipid fingerprints in single living mammalian cells. Nanocapillary sampling is an approach that enables the selection and isolation of single living cells under microscope observation. Here, live single cell nanocapillary sampling is coupled to liquid chromatography for the first time. This allows molecular species to be separated prior to ionisation and improves measurement precision of drug analytes. The efficiency of transferring analytes from the sampling capillary into a vial was optimised in this work. The analysis was carried out using standard flow liquid chromatography coupled to widely available mass spectrometry instrumentation, highlighting opportunities for widespread adoption. The method was applied to 30 living cells, revealing cell-to-cell heterogeneity in the uptake of different drug molecules. Using this system, we detected 14–158 lipid features per single cell, revealing the association between bedaquiline uptake and lipid fingerprints.
In this work, we demonstrate the development and first application of nanocapillary sampling followed by analytical flow liquid chromatography–mass spectrometry for single-cell lipidomics. Around 260 lipids were tentatively identified in a single cell, demonstrating remarkable sensitivity. Human pancreatic ductal adenocarcinoma cells (PANC-1) treated with the chemotherapeutic drug gemcitabine can be distinguished from controls solely on the basis of their single-cell lipid profiles. Notably, the relative abundance of LPC(0:0/16:0) was significantly affected in gemcitabine-treated cells, in agreement with previous work in bulk. This work serves as a proof of concept that live cells can be sampled selectively and then characterized using automated and widely available analytical workflows, providing biologically relevant outputs.
The global COVID-19 pandemic resulted in widespread harms but also rapid advances in vaccine development, diagnostic testing, and treatment. As the disease moves to endemic status, the need to identify characteristic biomarkers of the disease for diagnostics or therapeutics has lessened, but lessons can still be learned to inform biomarker research in dealing with future pathogens. In this work, we test five sets of research-derived biomarkers against an independent targeted and quantitative Liquid Chromatography–Mass Spectrometry metabolomics dataset to evaluate how robustly these proposed panels would distinguish between COVID-19-positive and negative patients in a hospital setting. We further evaluate a crowdsourced panel comprising the COVID-19 metabolomics biomarkers most commonly mentioned in the literature between 2020 and 2023. The best-performing panel in the independent dataset—measured by F1 score (0.76) and AUROC (0.77)—included nine biomarkers: lactic acid, glutamate, aspartate, phenylalanine, β-alanine, ornithine, arachidonic acid, choline, and hypoxanthine. Panels comprising fewer metabolites performed less well, showing weaker statistical significance in the independent cohort than originally reported in their respective discovery studies. Whilst the studies reviewed here were small and may be subject to confounders, it is desirable that biomarker panels be resilient across cohorts if they are to find use in the clinic, highlighting the importance of assessing the robustness and reproducibility of metabolomics analyses in independent populations.
Tetracosahexaenoic acid (24:6ω-3) is an intermediate in the conversion of 18:3ω-3 to 22:6ω-3 in mammals. There is limited information about whether cells can assimilate and metabolize exogenous 24:6ω-3. This study compared the effect of incubation with 24:6ω-3 on the fatty acid composition of two related cell types, primary CD3+ T lymphocytes and Jurkat T cell leukemia, which differ in the integrity of the polyunsaturated fatty acid (PUFA) biosynthesis pathway. 24:6ω-3 was only detected in either cell type when cells were incubated with 24:6ω-3. Incubation with 24:6ω-3 induced similar increments in the amount of 22:6ω-3 in both cell types and modified the homeoviscous adaptations fatty acid composition induced by activation of T lymphocytes. The effect of incubation with 18:3ω-3 compared to 24:6ω-3 on the increment in 22:6ω-3 was tested in Jurkat cells because primary T cells cannot convert 18:3ω-3 to 22:6ω-3. The increment in the 22:6ω-3 content of Jurkat cells incubated with 24:6ω-3 was 19.5-fold greater than that of cells incubated with 18:3ω-3. Acyl-coA oxidase siRNA knockdown decreased the amount of 22:6ω-3 and increased the amount of 24:6ω-3 in Jurkat cells. These findings show exogenous 24:6ω-3 can be incorporated into primary human T lymphocytes and Jurkat cells and induces changes in fatty acid composition consistent with its conversion to 22:6ω-3 via a mechanism involving peroxisomal β-oxidation that is regulated independently from the integrity of the upstream PUFA synthesis pathway. One further implication is that consuming 24:6ω-3 may be an effective alternative means of achieving health benefits attributed to 20:5ω-3 and 22:6ω-3.
The metallome has been involved in the pathological investigation into ocular tissue for decades; however, as technologies advance, more information can be ascertained from individual tissue sections that were not previously possible. Herein, a demonstration of complementary techniques has been utilized to describe the distribution and concentrations of essential metals in both wildtype (WT) and rhodopsin (Rho−/−) ocular tissues. The multimodal approach described is an example of complementary datasets that can be produced when employing a multifaceted analytical approach. Heterogenous distributions of copper and zinc were observable within both WT and Rho−/− tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and the distributions of further trace elements notoriously problematic for ICP-MS analysis (phosphorous, Sulfur, chlorine, potassium, calcium, iron, and aluminum) were analysed by particle-induced X-ray emission (PIXE).
Immune function changes across the life stages; for example, senior adults exhibit a tendency towards a weaker cell-mediated immune response and a stronger inflammatory response than younger adults. This might be partly mediated by changes in oxylipin synthesis across the life course. Oxylipins are oxidation products of polyunsaturated fatty acids (PUFAs) that modulate immune function and inflammation. A number of PUFAs are precursors to oxylipins, including the essential fatty acids (EFAs) linoleic acid (LA) and α-linolenic acid (ALA). LA and ALA are also substrates for synthesis of longer chain PUFAs. Studies with stable isotopes have shown that the relative amounts of LA and ALA can influence their partitioning by T lymphocytes between conversion to longer chain PUFAs and to oxylipins. It is not known whether the relative availability of EFA substrates influences the overall pattern of oxylipin secretion by human T cells or if this changes across the life stages. To address this, the oxylipin profile was determined in supernatants from resting and mitogen activated human CD3+ T cell cultures incubated in medium containing an EFA ratio of either 5:1 or 8:1 (LA : ALA). Furthermore, oxylipin profiles in supernatants of T cells from three life stages, namely fetal (derived from umbilical cord blood), adults and seniors, treated with the 5:1 EFA ratio were determined. The extracellular oxylipin profiles were affected more by the EFA ratio than mitogen stimulation such that n-3 PUFA-derived oxylipin concentrations were higher with the 5:1 EFA ratio than the 8:1 ratio, possibly due to PUFA precursor competition for lipoxygenases. 47 oxylipin species were measured in all cell culture supernatants. Extracellular oxylipin concentrations were generally higher for fetal T cells than for T cells from adult and senior donors, although the composition of oxylipins was similar across the life stages. The contribution of oxylipins towards an immunological phenotype might be due to the capacity of T cells to synthesize oxylipins rather than the nature of the oxylipins produced.
Treatments for COVID-19 infections have improved dramatically since the beginning of the pandemic, and glucocorticoids have been a key tool in improving mortality rates. The UK’s National Institute for Health and Care Excellence guidance is for treatment to be targeted only at those requiring oxygen supplementation, however, and the interactions between glucocorticoids and COVID-19 are not completely understood. In this work, a multi-omic analysis of 98 inpatient-recruited participants was performed by quantitative metabolomics (using targeted liquid chromatography-mass spectrometry) and data-independent acquisition proteomics. Both ‘omics datasets were analysed for statistically significant features and pathways differentiating participants whose treatment regimens did or did not include glucocorticoids. Metabolomic differences in glucocorticoid-treated patients included the modulation of cortisol and bile acid concentrations in serum, but no alleviation of serum dyslipidemia or increased amino acid concentrations (including tyrosine and arginine) in the glucocorticoid-treated cohort relative to the untreated cohort. Proteomic pathway analysis indicated neutrophil and platelet degranulation as influenced by glucocorticoid treatment. These results are in keeping with the key role of platelet-associated pathways and neutrophils in COVID-19 pathogenesis and provide opportunity for further understanding of glucocorticoid action. The findings also, however, highlight that glucocorticoids are not fully effective across the wide range of ‘omics dysregulation caused by COVID-19 infections.
Longer-chain polyunsaturated fatty acids (LCPUFAs) ≥20 carbons long are required for leukocyte function. These can be obtained from the diet, but there is some evidence that leukocytes can convert essential fatty acids (EFAs) into LCPUFAs. We used stable isotope tracers to investigate LCPUFA biosynthesis and the effect of different EFA substrate ratios in human T lymphocytes. CD3+ T cells were incubated for up to 48 h with or without concanavalin A in media containing a 18:2n-6:18:3n-3 (EFA) ratio of either 5:1 or 8:1 and [13C]18:3n-3 plus [d5]18:2n-6. Mitogen stimulation increased the amounts of 16:1n-7, 18:1n-9, 18:2n-6, 20:3n-6, 20:4n-6, 18:3n-3, and 20:5n-3 in T cells. Expression of the activation marker CD69 preceded increased FADS2 and FADS1 mRNA expression and increased amounts of [d5]20:2n-6 and [13C]20:3n-3 at 48 h. In addition, 22-carbon n-6 or n-3 LCPUFA synthesis was not detected, consistent with the absence of ELOVL2 expression. An EFA ratio of 8:1 reduced 18:3n-3 conversion and enhanced 20:2n-6 synthesis compared to a 5:1 ratio. Here, [d5]9- and [d5]-13-hydroxyoctadecadienoic (HODE) and [13C]9- and [13C]13-hydroxyoctadecatrienoic acids (HOTrE) were the major labelled oxylipins in culture supernatants; labelled oxylipins ≥20 carbons were not detected. An EFA ratio of 8:1 suppressed 9- and 13-HOTrE synthesis, but there was no significant effect on 9- and 13-HODE synthesis. These findings suggest that partitioning of newly assimilated EFA between LCPUFA synthesis and hydroxyoctadecaenoic acid may be a metabolic branch point in T-cell EFA metabolism that has implications for understanding the effects of dietary fats on T lymphocyte function.