Dr Jinfei Wang


Research Fellow
PhD

Academic and research departments

Institute for Communication Systems.

Publications

Jinfei Wang, Yi Ma, Rahim Tafazolli (2023)On Chernoff Lower-Bound of Outage Threshold for Non-Central χ² -Distributed MIMO Beamforming Gain Institute of Electrical and Electronics Engineers (IEEE)

The cumulative distribution function (CDF) of a non-central χ2-distributed random variable (RV) is often used when measuring the outage probability of communication systems. For adaptive transmitters, it is important but mathematically challenging to determine the outage threshold for an extreme target outage probability (e.g., 10 −5 or less). This motivates us to investigate lower bounds of the outage threshold, and it is found that the one derived from the Chernoff inequality (named Cher-LB) is the most effective lower bound. The Cher-LB is then employed to predict the multi-antenna transmitter beamforming-gain in ultra-reliable and low-latency communication, concerning the first-order Markov time-varying channel. It is exhibited that, with the proposed Cher-LB, pessimistic prediction of the beamforming gain is made sufficiently accurate for guaranteed reliability as well as the transmit-energy efficiency. Index Terms—Chernoff bound, beamforming gain, non-central χ2-distribution, reliability, multi-input multi-output (MIMO).

The cumulative distribution function (CDF) of a non-central χ2 -distributed random variable (RV) is often used when measuring the outage probability of communication systems. For adaptive transmitters, it is important but mathematically challenging to determine the outage threshold for an extreme target outage probability (e.g., 10−5 or less). This motivates us to investigate lower bounds of the outage threshold, and it is found that the one derived from the Chernoff inequality (named Cher-LB) is the most {effective} lower bound. The Cher-LB is then employed to predict the multi-antenna transmitter beamforming-gain in ultra-reliable and low-latency communication, concerning the first-order Markov time-varying channel. It is exhibited that, with the proposed Cher-LB, pessimistic prediction of the beamforming gain is made sufficiently accurate for guaranteed reliability as well as the transmit-energy efficiency.

XUE Songyan, L I Ang, WANG Jinfei, Y I Na, M A Yi, Rahim Tafazolli (2019)To Learn or Not to Learn:Deep Learning Assisted Wireless Modem Design, In: 中兴通讯技术(英文版)17(4)pp. 3-11 Institute for Communication Systems, University of Surrey, Guildford, GU2 7XH, the United Kingdom

Deep learning is driving a radical paradigm shift in wireless communications, all the way from the application layer down to the physical layer. Despite this, there is an ongoing debate as to what additional values artificial intelligence (or machine learning) could bring to us, particularly on the physical layer design; and what penalties there may have? These ques-tions motivate a fundamental rethinking of the wireless modem design in the artificial intelli-gence era. Through several physical-layer case studies, we argue for a significant role that ma-chine learning could play, for instance in parallel error-control coding and decoding, channel equalization, interference cancellation, as well as multiuser and multiantenna detection. In addition, we discuss the fundamental bottlenecks of machine learning as well as their poten-tial solutions in this paper.

Jiuyu Liu, Yi Ma, Jinfei Wang, Na Yi, Rahim Tafazolli, SONGYAN XUE, Fan Wang (2021)A Non-Stationary Channel Model with Correlated NLoS/LoS States for ELAA-mMIMO, In: 2021 IEEE Global Communications Conference (GLOBECOM)pp. 1-6 IEEE

In this paper, a novel spatially non-stationary channel model is proposed for link-level computer simulations of massive multiple-input multiple-output (mMIMO) with extremely large aperture array (ELAA). The proposed channel model allows a mix of non-line-of-sight (NLoS) and LoS links between a user and service antennas. The NLoS/LoS state of each link is characterized by a binary random variable, which obeys a correlated Bernoulli distribution. The correlation is described in the form of an exponentially decaying window. In addition, the proposed model incorporates shadowing effects which are non-identical for NLoS and LoS states. It is demonstrated, through computer emulation, that the proposed model can capture almost all spatially non-stationary fading behaviors of the ELAA-mMIMO channel. Moreover, it has a low implementational complexity. With the proposed channel model, Monte-Carlo simulations are carried out to evaluate the channel capacity of ELAA-mMIMO. It is shown that the ELAA-mMIMO channel capacity has considerably different stochastic characteristics from the conventional mMIMO due to the presence of channel spatial non-stationarity.

Jinfei Wang, Yi Ma, Rahim Tafazolli, Zhibo Pang (2023)On Chernoff Lower-Bound of Outage Threshold for Non-Central χ 2 -Distributed Beamforming Gain in URLLC Systems, In: IEEE transactions on wireless communications IEEE

—The cumulative distribution function (CDF) of a non-central χ 2-distributed random variable (RV) is often used when measuring the outage probability of communication systems. For ultra-reliable low-latency communication (URLLC), it is important but mathematically challenging to determine the outage threshold for an extremely small outage target. This motivates us to investigate lower bounds of the outage threshold, and it is found that the one derived from the Chernoff inequality (named Cher-LB) is the most effective lower bound. This finding is associated with three rigorously established properties of the Cher-LB with respect to the mean, variance, reliability requirement , and degrees of freedom of the non-central χ 2-distributed RV. The Cher-LB is then employed to predict the beamforming gain in URLLC for both conventional multi-antenna systems (i.e., MIMO) under first-order Markov time-varying channel and reconfigurable intellgent surface (RIS) systems. It is exhibited that, with the proposed Cher-LB, the pessimistic prediction of the beamforming gain is made sufficiently accurate for guaranteed reliability as well as the transmit-energy efficiency.