Harry Addison
About
My research project
SNe spectroscopy and cosmologyThe Time-Domain Extragalactic Survey (TiDES) will conduct spectroscopic follow up of optical transients observed by upcoming sky surveys such as the Large Synoptic Survey Telescope (LSST). Over TiDES proposed observing timeline, it will observe spectra of over 30,000 supernovae (SN), of which about 25,000 will be type Ia SN. This will be the largest spectroscopic sample of SNe Ia to date and will allow us to further investigate the properties of sub-types of SN Ia and their systematic effects in the use for constraining the cosmological model and dark energy. Due to the large number of spectra that will be observed, we are at a stage where visually analysing data is impractical. Therefore, we are currently developing a pipeline for TiDES that will automate the spectroscopic analysis of the observed supernovae spectra. In the future, we hope to the use the results from the spectral analysis to investigate the systematics present in using SNe Ia for constraining the cosmological model and dark matter.
As a member of 4MOST, I have been given the opportunity to be involved with the commissioning of the spectrograph on ESO's VISTA telescope (Paranal, Chile). The commissioning of 4MOST will involve understanding the procedures used to validate the spectrograph and telescope are working as intended, carrying out these procedures on site at Paranal, and monitoring/rectifying/minimising the effects of any issues that arise.
Supervisors
The Time-Domain Extragalactic Survey (TiDES) will conduct spectroscopic follow up of optical transients observed by upcoming sky surveys such as the Large Synoptic Survey Telescope (LSST). Over TiDES proposed observing timeline, it will observe spectra of over 30,000 supernovae (SN), of which about 25,000 will be type Ia SN. This will be the largest spectroscopic sample of SNe Ia to date and will allow us to further investigate the properties of sub-types of SN Ia and their systematic effects in the use for constraining the cosmological model and dark energy. Due to the large number of spectra that will be observed, we are at a stage where visually analysing data is impractical. Therefore, we are currently developing a pipeline for TiDES that will automate the spectroscopic analysis of the observed supernovae spectra. In the future, we hope to the use the results from the spectral analysis to investigate the systematics present in using SNe Ia for constraining the cosmological model and dark matter.
As a member of 4MOST, I have been given the opportunity to be involved with the commissioning of the spectrograph on ESO's VISTA telescope (Paranal, Chile). The commissioning of 4MOST will involve understanding the procedures used to validate the spectrograph and telescope are working as intended, carrying out these procedures on site at Paranal, and monitoring/rectifying/minimising the effects of any issues that arise.
Affiliations and memberships
Publications
Luminous red novae (LRNe) are astrophysical transients believed to be caused by the partial ejection of a binary star’s common envelope (CE) and the merger of its components. The formation of the CE is likely to occur during unstable mass transfer, initiated by a primary star which is evolving off the main sequence (a Hertzsprung gap star) and a lower mass companion. In agreement with observations, theoretical studies have shown that outflows from the pre-CE phase produce a detectable brightening of the progenitor system a few years before the ejection event. Based on these assumptions, we present a method to identify Galactic LRNe precursors, the resulting precursor candidates, and our follow-up analysis to uncover their nature. We begin by constructing a sample of progenitor systems, i.e. Hertzsprung gap stars, by statistically modelling the density of a colour magnitude diagram formed from ‘well behaved’ Gaia DR2 sources. Their time-domain evolution from the Zwicky Transient Facility (ZTF) survey is used to search for slowly brightening events, as pre-CE precursor candidates. The nature of the resulting candidates is further investigated using archival data and our own spectroscopic follow-up. Overall, we constructed a sample of ∼5.4 × 104 progenitor sources, from which 21 were identified as candidate LRNe precursors. Further analysis revealed 16 of our candidates to be Hα emitters, with their spectra often suggesting hotter (albeit moderately extincted) A-type or B-type stars. Because of their long-term variability in optical and mid-infrared wavelengths, we propose that many of our candidates are mass-transferring binaries with compact companions surrounded by dusty circumstellar discs or alternatively magnetically active stellar merger remnants.