Elaheh Kalantari
About
My research project
Machine learning models to analyse in-home observation, measurement, and clinical data for remote patient monitoringThis research will leverage machine learning and deep learning algorithms to integrate and represent multimodal data. The goal is to extract relevant information, detect disparities among subjects, predict disease stages, and develop scalable and generalizable statistical models for guiding therapeutic interventions. The study involves handling sensitive data from wearable and ambient sensors used by individuals with dementia in various monitoring settings, including laboratories and homes. The primary objective is to precisely identify sleep disturbances, which serve as both symptoms and risk factors for dementia.
This research will leverage machine learning and deep learning algorithms to integrate and represent multimodal data. The goal is to extract relevant information, detect disparities among subjects, predict disease stages, and develop scalable and generalizable statistical models for guiding therapeutic interventions. The study involves handling sensitive data from wearable and ambient sensors used by individuals with dementia in various monitoring settings, including laboratories and homes. The primary objective is to precisely identify sleep disturbances, which serve as both symptoms and risk factors for dementia.
Publications
Background Sleep disturbances are both risk factors for and symptoms of dementia. Current methods for assessing sleep disturbances are largely based on either polysomnography (PSG) which is costly and inconvenient, or self‐ or care‐giver reports which are prone to measurement error. Low‐cost methods to monitor sleep disturbances longitudinally and at scale can be useful for assessing symptom development. Here, we develop deep learning models that use multimodal variables (accelerometers and temperature) recorded by the AX3 to accurately identify sleep and wake epochs and derive sleep parameters. Method Eighteen men and women (65‐80y) participated in a sleep laboratory‐based study in which multiple devices for sleep monitoring were evaluated. PSGs were recorded over a 10‐h period and scored according to established criteria per 30 sec epochs. Tri‐axial accelerometers and temperature signals were captured with an Axivity AX3, at 100Hz and 1Hz, respectively, throughout a 19‐h period, including 10‐h concurrent PSG recording and 9‐h of wakefulness. We developed and evaluated a supervised deep learning algorithm to detect sleep and wake epochs and determine sleep parameters from the multimodal AX3 raw data. We validated our results with gold standard PSG measurements and compared our algorithm to the Biobank accelerometer analysis toolbox. Single modality (accelerometer or temperature) and multimodality (both signals) approaches were evaluated using the 3‐fold cross‐validation. Result The proposed deep learning model outperformed baseline models such as the Biobank accelerometer analysis toolbox and conventional machine learning classifiers (Random Forest and Support Vector Machine) by up to 25%. Using multimodal data improved sleep and wake classification performance (up to 18% higher) compared with the single modality. In terms of the sleep parameters, our approach boosted the accuracy of estimations by 11% on average compared to the Biobank accelerometer analysis toolbox. Conclusion In older adults without dementia, combining multimodal data from AX3 with deep learning methods allows satisfactory quantification of sleep and wakefulness. This approach holds promise for monitoring sleep behaviour and deriving accurate sleep parameters objectively and longitudinally from a low‐cost wearable sensor. A limitation of our current study is that the participants were healthy older adults: future work will focus on people living with dementia.
Oncology patients experience numerous co-occurring symptoms during their treatment. The identification of sentinel/core symptoms is a vital prerequisite for therapeutic interventions. In this study, using Network Analysis, we investigated the inter-relationships among 38 common symptoms over time (i.e., a total of six time points over two cycles of chemotherapy) in 987 oncology patients with four different types of cancer (i.e., breast, gastrointestinal, gynaecological, and lung). In addition, we evaluated the associations between and among symptoms and symptoms clusters and examined the strength of these interactions over time. Eight unique symptom clusters were identified within the networks. Findings from this research suggest that changes occur in the relationships and interconnections between and among co-occurring symptoms and symptoms clusters that depend on the time point in the chemotherapy cycle and the type of cancer. The evaluation of the centrality measures provides new insights into the relative importance of individual symptoms within various networks that can be considered as potential targets for symptom management interventions.