![](/themes/custom/surrey/assets/dist/img/profile_default_2.jpg)
Dr Bong-Hwan Oh
Research Fellow
Academic and research departments
Institute for Communication Systems, Faculty of Engineering and Physical Sciences.Publications
Qian P, Wang N, Oh B, Ge C, Tafazolli R Optimization of Webpage Downloading Performance with Content-aware Mobile Edge Computing,MECOMM '17 Proceedings of the Workshop on Mobile Edge Communicationspp. 31-36 Association for Computing Machinery (ACM)
With increased complexity of webpages nowadays, computation
latency incurred by webpage processing during downloading operations
has become a newly identified factor that may substantially
affect user experiences in a mobile network. In order to tackle this issue,
we propose a simple but effective transport-layer optimization
technique which requires necessary context information dissemination
from the mobile edge computing (MEC) server to user devices
where such an algorithm is actually executed. The key novelty in
this case is the mobile edge?s knowledge about webpage content
characteristics which is able to increase downloading throughput
for user QoE enhancement. Our experiment results based on a real
LTE-A test-bed show that, when the proportion of computation
latency varies between 20% and 50% (which is typical for today?s
webpages), the downloading throughput can be improved up to
34.5%, with reduced downloading time by up to 25.1%
Oh Bong-Hwan, Vural Serdar, Wang Ning, Tafazolli Rahim (2018) Priority-based Flow Control for Dynamic and
Reliable Flow Management in SDN,IEEE Transactions on Network and Service Management IEEE
Software-Defined Networking (SDN) is a promising
paradigm of computer networks, offering a programmable and
centralised network architecture. However, although such a
technology supports the ability to dynamically handle network
traffic based on real-time and flexible traffic control, SDN-based
networks can be vulnerable to dynamic change of flow control
rules, which causes transmission disruption and packet loss in
SDN hardware switches. This problem can be critical because the
interruption and packet loss in SDN switches can bring additional
performance degradation for SDN-controlled traffic flows in the
data plane. In this paper, we propose a novel robust flow control
mechanism referred to as Priority-based Flow Control (PFC)
for dynamic but disruption-free flow management when it is
necessary to change flow control rules on the fly. PFC minimizes
the complexity of flow modification process in SDN switches
by temporarily adapting the priority of flow rules in order to
substantially reduce the time spent on control-plane processing
during run-time. Measurement results show that PFC is able
to successfully prevent transmission disruption and packet loss
events caused by traffic path changes, thus offering dynamic and
lossless traffic control for SDN switches.