Dr Alireza Tamaddoni-Nezhad


Reader (Associate Professor) in Machine Learning and Computational Intelligence
BSc, MSc, DIC, PhD (Imperial College London), FHEA

About

Research

Research interests

Research projects

Supervision

Postgraduate research supervision

Teaching

Publications

[ A more up to date list and pdf files are available from: https://hmlr-lab.github.io/publications ]

Selected Journal Articles 

[1] D Barroso-Bergada, A Tamaddoni-Nezhad, D Varghese, C Vacher, N Galic, V Laval, F Suffert, and D Bohan, Unravelling the web of dark interactions: explainable inference of the diversity of microbial interactions, Advances in Ecological Research, 68:155-183, 2023

[2] A. Soliman, J. O'Connell, A. Tamaddoni-Nezhad, Data-driven revenue characterisation and analysis of long-haul low-cost carriers in the Southeast Asian market, Jour. of Air Trans. Mang, 103 ,2022 

[3] A. Makiola, Z. Compson, D. Baird, M. Barnes.., A. Tamaddoni-Nezhad..,Key questions for next-generation biomonitoring, Frontiers in Env. Sci., 7:197, Frontiers, 2020. 

[4] A. Ma, X. Lu, C. Gray, A. Raybould, A. Tamaddoni-Nezhad, G. Woodward, D. Bohan. Ecological networks reveal resilience of agro-ecosystems to changes in farming management. Nature Ecology & Evolution 3:260-264, 2019 

[5] S.H. Muggleton, W-Z. Dai, C. Sammut, A. Tamaddoni-Nezhad, J. Wen and Z-H. Zhou. Meta-interpretive learning from noisy images. Machine Learning, 107:1097-1118, 2018. 

[6] S.H. Muggleton, U. Schmid, C. Zeller, A. Tamaddoni-Nezhad, and Besold. Ultra-strong machine learning - comprehensibility of programs learned with ILP. Machine Learning, 107:1119-1140, 2018 

[7] D. Bohan, C. Vacher, A. Tamaddoni-Nezhad, A. Raybould, A. Dumbrell and G. Woodward, Next- Generation Global Biomonitoring: Large-scale, automated reconstruction of ecological networks. Trends in Ecology and Evolution, 32(7):477-487, 2017 

[8] C. Vacher, A. Tamaddoni-Nezhad, S. Kamenova, N. Peyrard, Y. Moalic, R. Sabbadin, L. Schwaller, J. Chiquet, M. Smith, J. Vallance, V. Fievet, D. Bohan, Learning Ecological Networks from Next-Generation Sequencing Data. Advances in Ecol. Res., 54, 1-39, 2016. 

[9] M. Pocock, D. Evans, C. Fontaine, M. Harvey, R. Julliard, Ó. McLaughlin, J. Silvertown, A. Tamaddoni-Nezhad, P. White, and D. Bohan, The visualisation of ecological networks, and their use as a tool for engagement, advocacy and management, Adv. in Ecol. Research, 54, 1-39, 2016. 

[10] QUINTESSENCE Consortium, Networking our way to better Ecosystem Service provision. Trends in Ecology and Evolution, 31(2):105-115, 2016. 

[11] S.H. Muggleton, D. Lin and A. Tamaddoni-Nezhad, Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited, Machine Learning, 100(1):49-73, 2015. (Citations: 279) 

[12] S.H. Muggleton, D. Lin, N. Pahlavi, and A. Tamaddoni-Nezhad. Meta-Interpretive Learning: application to Grammatical Inference. Machine Learning, 94:25-49, 2014 

[13] A. Tamaddoni-Nezhad, G. Afroozi Milani, A. Raybould, S. Muggleton and D.Bohan, Construction and Validation of Agricultural Food-webs using Logic-based Machine Learning and Text-mining, Advances in Ecological Research, vol. 49, pages 224-290, 2013.

[14] D. Bohan, A. Raybould, C. Mulder, G. Woodward, A. Tamaddoni-Nezhad, N. Bluthgen, M. Pocock, S. Muggleton, D. Evans, J. Astegiano, F. Massol, N. Loeuille, Networking Agroecology: Integrating the diversity of agroecosystem interactions, Adv. in Eco. Res., vol. 49, pages 2-67, 2013. 

[15] M. Sternberg, A. Tamaddoni-Nezhad, V. Lesk, E. Kay, P.  Hitchen,  A. Cootes, L. Alphen, M. Lamoureux, H. Jarrell, C. Rawlings, E. Soo, C. Szymanski,  A. Dell, B. Wren, S. Muggleton. Gene function hypotheses for the Campylobacter jejuni glycome generated by a logic-based approach. Jour of Mol. Bio., 425(1):186-197, 2013. 

[16] D. A. Bohan, G. Caron-Lormier, S. Muggleton, A. Raybould and A. Tamaddoni-Nezhad. Automated Discovery of Food Webs from Ecological Data Using Logic-Based Machine Learning. PloS One, vol. 6, pp. e29028, 2011. 

[17] E Kay, V Lesk, A. Tamaddoni-Nezhad, P Hitchen, A Dell, M. Sternberg, S. Muggleton, B Wren. Systems analysis of bacterial glycomes. Bioch. Soc. Trans., 38(5), pp.1290–1293, 2010.

[18] A. Tamaddoni-Nezhad and S.H. Muggleton. The lattice structure and refinement operators for the hypothesis space bounded by a bottom clause. Machine Learning, 76(1):37-72, 2009. 

[19] A. Tamaddoni-Nezhad, R. Chaleil, A. Kakas, M. Sternberg, J. Nicholson, and S. Muggleton. Modeling the effects of toxins in metabolic networks. IEEE Engineering in Medicine and Biology, 26:37-46, 2007.

[20] S.H. Muggleton and A.Tamaddoni-Nezhad. QG/GA: A stochastic search approach for Progol. Machine Learning, 70 (2–3):123–133, 2007.  (MLJ's Best Theory Paper Award)

[21] A. Tamaddoni-Nezhad, R. Chaleil, A. Kakas, and S.H. Muggleton. Application of abductive ILP to learning metabolic network inhibition from temporal data. Machine Learning, 64:209–230, 2006.

Selected Book Chapters / Edited Book 

[22] A. Tamaddoni-Nezhad, D. Bohan, G. Milani, A. Raybould and S. Muggleton. Human-Machine Scientific Discovery. Book chapter in Human-Like Machine Intelligence, Oxford University Press, 2021

[23] D. Bohan, D. Gravel, A. Tamaddoni-Nezhad, C. Vacher, S. Robin, Eds. A Next-Generation of Biomonitoring to Detect Global Ecosystem Change. Frontiers Media SA. 2020.

[24] A. Tamaddoni-Nezhad, D. Lin, H. Watanabe, J. Chen and S. Muggleton, Machine Learning of Biological Networks using Abductive ILP, In Eds. Cerro &Inoue, Logical Modeling of Biological Systems, pp 363-401, ISTE-Wesley, 2014

Selected Refereed Conference and Workshop Papers 

[25] D. Varghese, D. Cyrus, S. Patsantzis, J. Trewern, A. Treloar, A. Hunter and A. Tamaddoni-Nezhad, One-Shot Learning of Autonomous Behaviour: A Meta-interpretive Learning approach, In Proc. of the 33rd Int. Conf. on Inductive Logic Programming (ILP), Springer, 2024 (Accepted).

[26] S. Patsantzis and A. Tamaddoni-Nezhad, From model-based learning to model-free behaviour with Meta-Interpretive Learning, In Proc. of the 33rd Int. Conf. on Ind. Log. Prog (ILP), Springer, 2024 (Accepted).

[27] Z. Chaghazardi, S. Fallah, and A. Tamaddoni-Nezhad, Trustworthy Vision for Autonomous Vehicles: A Robust Logic-infused Deep Learning Approach, In Proc. of the IEEE Int. Conf. Intel. Tran. Sys (ITSC), 2024 (Accepted).

[28] D. Cyrus, D. Varghese, and A. Tamaddoni-Nezhad, An Inductive Logic Programming approach for feature-range discovery, In Proc. of the 33rd Int. Conf. on ILP, Springer, 2024 (Accepted, Best Student Paper Award)

[29] Z. Chaghazardi, S. Fallah, and A. Tamaddoni-Nezhad, Leveraging Inductive Logic Programming and Deep Learning for Trustworthy Vision, In Proc. of the 33rd Int. Conf. on ILP, Springer, 2024 (Accepted).

[30] J. Trewern and S. Patsantzis and Alireza Tamaddoni-Nezhad, Meta-Interpretive learning as Second Order Resolution, In Proc. of the 33rd Int. Conf. on Inductive Logic Programming (ILP), Springer, 2024 (Accepted). 

[31] D. Varghese and A. Tamaddoni-Nezhad, Towards enhancing LLMs with logic-based reasoning, In Proc. of the 4th Int. Conf. on Learn and Reasoning (IJCLR), Springer, 2024 (Accepted).

[32] D Cyrus, J Trewern, A Tamaddoni-Nezhad, Meta Interpretive Learning of Fractals. In Proc. of the 32nd Int Conf on Inductive Logic Programming, ILP 2023, pp. 166-174, Springer, 2023 

[33] D Varghese, R Bauer, A Tamaddoni-Nezhad, Few-shot learning of diagnostic rules for neurodegenerative diseases using Inductive Logic Programming, In Proc. of the Int Conf on ILP, pp. 109-123, Springer, 2023

[34] Z Chaghazardi, S Fallah, A Tamaddoni-Nezhad, A Logic-based Compositional Generalisation Approach for Robust Traffic Sign Detection, In IJCAI 2023 Workshop on Knowledge-Based Compos Generalization, 2023 

[35] D Cyrus, G Milani, A Tamaddoni-Nezhad, Explainable Game Strategy Rule Learning from Video. In Proc. of 17th Int. Rule Challenge Conf on RuleML+RR Challenge, 8-10, 2023.

[36] Z Chaghazardi, S Fallah, A Tamaddoni-Nezhad, Explainable and Trustworthy Traffic Sign Detection for Safe Autonomous Driving: An ILP Approach, In Proc. of Int Conf on Logic Programming, 201-212, 2023.

[37] G A Milani, D Cyrus, A Tamaddoni-Nezhad, Towards One-Shot Learning for Text Classification using ILP, In Proc of Int Conf on Logic Programming, 69-79, 2023

[38] D. Varghese, D. Barroso-Bergada, D. Bohan and A. Tamaddoni-Nezhad, Efficient Abductive Learning of Microbial Interactions using Meta Inverse Entailment, In Proc. of the 31th Int. Conf. on Inductive Logic Programming, 127-141, Springer, 2023 (Best Application Paper Award)

[39] M. Yildirim, S. Mozaffari, L McCutcheon, M Dianati, A Tamaddoni-Nezhad, S Fallah, Prediction based decision making for autonomous highway driving, In Proc. of IEEE 25th Int Conf. on Intel. Trans. Sys (ITSC), 138-145, 2022

[40] D. Varghese, U. Patel, P. Krause, A. Tamaddoni-Nezhad, Few-Shot Learning for Plant Disease Classification Using ILP. In Proc. Int Advanced Computing Conf., 321-336, 2022

[41] A. Soliman, J. O'Connell, A. Tamaddoni-Nezhad, Application of Relational Machine Learning to construct Explainable AI models from airline big data, In Proc. of the 25th Air Trans. Res. Soc., ATRS, 103:102242, 2022

[42] D. Barroso-Bergada, A. Tamaddoni-Nezhad, S. Muggleton, C. Vacher, N. Galic, D. Bohan, Machine learning of microbial interactions In Proc. of the Int. Conf. on ILP, pp 26-40, Springer-Verlag, 2022

[43] D. Varghese, R. Bauer, D. Baxter-Beard, S. Muggleton, A. Tamaddoni-Nezhad, Human-like rule learning from images using one-shot hypothesis derivation, In Proc. of the Int. Conf. on ILP, pp 234-250, Springer, 2022

[44] D. Varghese, A. Tamaddoni-Nezhad, One-Shot Rule Learning for Challenging Character Recognition, In Proc. of Int Conf. Declarative AI / RuleML Challenge, CEUR-WS, vol 2644, pages 10-27, 2020.

[45] W-Z Dai, S.H. Muggleton, J. Wen, A. Tamaddoni-Nezhad, and Z-H. Zhou. Logical vision: One-shot meta-interpretive learning from real images. In Proc. of the Int. Conf. on ILP, Springer, pp 46-62, 2018..

[46] A. Cropper, A. Tamaddoni-Nezhad, and S. Muggleton. Meta-interpretive learning of data transformation programs. In Proc. of the 25th Intl. Con. on Inductive Logic Programming, pages 46-59, 2016.

[47] A. Tamaddoni-Nezhad, D. Bohan, A. Raybould and S. Muggleton. Towards machine learning of predictive models from ecological data. In Proc. of the Int. Conf. on ILP, Springer, pages 154-167, 2015. (AOR 3*)

[48] S.H. Muggleton, D. Lin, J. Chen, and A. Tamaddoni-Nezhad. Metabayes: Bayesian meta-interpretative learning using higher-order stochastic refinement. In Proc. of the Int. Conf. on ILP, pages 1-17, 2014 (AOR 3*)

[49] A. Tamaddoni-Nezhad, D. Bohan, A. Raybould and S. Muggleton. Machine learning a probabilistic network of ecological interactions. In Proc. of the Int. Conf. on ILP, 332-346, 2012. (Best Application Paper Award)

[50] S.H. Muggleton, D. Lin, and A. Tamaddoni-Nezhad. MC-Toplog: Complete multi-clause learning guided by a top theory. In Proc. of the 21st Int. Conf. on ILP, LNAI 7207, pages 238-254, 2012.

[51] A. Tamaddoni-Nezhad and S.H. Muggleton. Stochastic Refinement. In Proceedings of the 20th International Conference on Inductive Logic Programming, pages 222-237, 2011.

[52] S.H. Muggleton, J. Santos, and A. Tamaddoni-Nezhad. ProGolem: a system based on relative minimal generalisation. In Proc. of the 19th Int. Conf. on ILP, pages 131-148. Springer-Verlag, 2010. (Citations: 68)

[53] S.H. Muggleton, J. Santos, and A. Tamaddoni-Nezhad. TopLog: ILP using a logic program declarative bias. In Proceedings of the Int. Conf. on Logic Programming 2008, LNCS 5366, pages 687-692. Springer-Verlag, 2010.

[54] A. Tamaddoni-Nezhad, R. Barton,..M. Sternberg, B. Wren, S. Muggleton, A logic-based approach for modeling genotype-phenotype relations in Campylobacter, In Proc. Int Con. Sys. Biology (ICSB-2008), 2008. 

[55] A. Tamaddoni-Nezhad and S.H. Muggleton. A note on refinement operators for IE-based ILP systems. In Proceedings of the 18th Int. Conf. on Inductive Logic Programming, pages 297-314. Springer-Verlag, 2008. 

[56] A. Tamaddoni-Nezhad, A. Kakas, S.H. Muggleton, and F. Pazos. Modelling inhibition in metabolic pathways through abduction and induction. In Proc. of the 14th Int. Conf. on ILP, pages 305-322. Springer-Verlag, 2004.

[57] S.H. Muggleton, A. Tamaddoni-Nezhad, and H. Watanabe.  Induction of enzyme classes from biological databases. In Proc. of the 13th Int. Conf. on Inductive Logic Programming, pp 269-280. Springer-Verlag, 2003.

[58] A. Tamaddoni-Nezhad, S. Muggleton, and J. Bang.  A Bayesian model for metabolic pathways. In Int. Joint Con. on AI (IJCAI03) Workshop on Learning Statistical Models from Relational Data, pp 50-57, 2003.

[59] A. Tamaddoni-Nezhad and S.H. Muggleton.  A genetic algorithms approach to ILP. In Proceedings of the 12th International Conference on Inductive Logic Programming, pages 285-300. Springer-Verlag, 2002.

[60] A. Tamaddoni-Nezhad and S.H. Muggleton.  Using genetic algorithms for learning clauses in first-order logic. In Proc. of the Genetic and Evolutionary Computation Conference, GECCO-2001, pp 639-646, 2001

[61] A. Tamaddoni-Nezhad and S.H. Muggleton. Searching the subsumption lattice by a genetic algorithm. In Proceedings of the 10th Int. Conf. on Inductive Logic Programming, pages 243-252. Springer-Verlag, 2000.