| | COMPARISON OF COMPLEMI Method | Depth Profiling & | Crystal- | Elemental | |----------------|---|---|--|---| | | TVICTION. | Lateral resolution | lography | Analysis | | XRF | X-ray fluorescence: X-rays in, lower energy X-rays out. Works in real space. <i>Direct competitor to PIXE</i> . XRF cross-sections are high near the exciting wavelength and fall (opposite to PIXE). Can be used (especially with tunable – synchrotron - source) to excite one species preferentially Quantification hard: no complementary signals | Depth sensitivity using microcapillary lenses and confocal techniques. Lateral mapping at ~um resolution with synchrotron source | No | ug/g sensitivity for
many elements.
Quantification often
hard. | | XRD | X-ray diffraction : X-rays in, same energy X-rays out. Works in reciprocal space, imaging Bragg reflections | incidence | Yes, very powerful | Indirect | | TEM | Transmission electron microscopy : Imaging electrons transmitted through <i>thin</i> samples. Elemental analysis: energy dispersive X-ray analysis (EDX) & electron energy loss spectroscopy (EELS). Analysed volume is always <i>very small</i> . | Intrinsically a phase contrast technique, but depth resolution with cross-sections or stereoscopy or confocal methods, atomic resolution | Yes, very
powerful, with
selected area
diffraction | With EDX and
EELS. Usually semi
quantitive:
representativeness
always a concern | | MEIS | Medium energy ion scattering : RBS with 100keV H beam (near maximum of energy loss curve for best depth resolution). Needs sophisticated position sensitive detector for angular resolution of scattered beam | Very high sensitivity to first few atomic layers | Detailed
crystallography
of first few
atomic layers | As RBS. Uncertain ionisation state makes quantification hard | | LEIS or
ISS | Low energy ion scattering or ion scattering spectroscopy : RBS with noble gas ion of a few keV. Needs sophisticated position sensitive detector for angular resolution of scattered beam. | Very high sensitivity to first atomic layer | crystallography
of first atomic
layer | As RBS & MEIS | | XPS | X-ray photoelectron spectroscopy : X-rays in, photoelectrons out. Photoelectrons can escape only from from first few atomic layers: :the <i>inelastic mean free path</i> is the critical quantity. Energy analysed with sophisticated spectrometers. Chemical bonding information. Sensitivity ~atomic%, absolute quantification (~10%, but much better in specific cases). Mapping using confocal methods of electron extraction. | Only with sputtering. XPS is intrinsically very surface sensitive: can use angle resolved methods for depth resolution in first 10nm without sputtering. ~10um lateral resolution | No | Yes, traceability hard | | AES or
SAM | Auger electron spectroscopy or scanning Auger microscopy: Electrons in, Auger electrons out. Electron spectroscopy as for XPS. Use SEM technology for electron beam, thus very high lateral resolution. Less chemical bonding info since electron impact ionisation is a more complicated process. | as XPS. Mapping at sub-nm resolution | No | Yes, traceability
harder than XPS.
Often used
qualitatively |